Multi-wavelength Optical Imaging of Human Tumour Xenografts
Wei Wang A B , Arlin G. Cameron A , Juliet A. Wendt A , Michel E. Mawad A and Shi Ke A B CA Department of Radiology, Baylor College of Medicine, One Baylor Plaza, MS 360, Houston, TX 77030, USA.
B These authors contributed equally to this manuscript.
C Corresponding author. Email: shik@bcm.edu
Australian Journal of Chemistry 64(5) 625-632 https://doi.org/10.1071/CH10449
Submitted: 9 December 2010 Accepted: 12 April 2011 Published: 30 May 2011
Abstract
In vivo optical imaging methods have become a cornerstone of pre-clinical cancer research. Genetically modified cells with fluorescent or bioluminescent reporters allow researchers to non-invasively study tumour proliferation and biochemistry over time. Target-specific fluorescent probes may be used to reveal specific tumour properties such as growth patterns, neovasculature formation, and compartmental probe absorbance. Herein, we demonstrate the simultaneous optical imaging of these tumour properties in a human neuroblastoma model. We used luciferase-positive cancer cells, a neovasculature specific fluorescent probe, and a fluorescent tumour cell target-specific agent, in conjunction with X-ray/CT for anatomical localization. These experiments revealed a detailed map of the tumour progression and biological interactions with imaging agents within the tumour.
References
[1] W. Wang, X. Qiu, F. Zhang, J. Sun, A. G. Cameron, J. A. Wendt, M. E. Mawad, S. Ke, Contrast Media Mol. Imag. 2011, 6.| Crossref | GoogleScholarGoogle Scholar |
[2] B. A. Smith, W. J. Akers, W. M. Leevy, A. J. Lampkins, S. Xiao, W. Wolter, M. A. Suckow, S. Achilefu, B. D. Smith, J. Am. Chem. Soc. 2010, 132, 67.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKgtbnL&md5=c08cbada07c75725c54629d8c9dbe2c0CAS | 20014845PubMed |
[3] S. C. Kaste, Pediatr. Radiol. 2009, 39, 74.
| Crossref | GoogleScholarGoogle Scholar |
[4] E. Robbins, Pediatr. Blood Cancer 2008, 51, 453.
| Crossref | GoogleScholarGoogle Scholar | 18465805PubMed |
[5] T. W. Valk, M. S. Frager, M. D. Gross, J. C. Sisson, D. M. Wieland, D. P. Swanson, T. J. Manger, W. H. Beierwaltes, Ann. Intern. Med. 1981, 94, 762.
| 1:STN:280:DyaL3M3gsFeqsA%3D%3D&md5=c825795e93b091342044e34e83d004a9CAS | 7235418PubMed |
[6] D. M. Wieland, J. Wu, L. E. Brown, T. J. Mangner, D. P. Swanson, W. H. Beierwaltes, J. Nucl. Med. 1980, 21, 349.
| 1:CAS:528:DyaL3cXkt1WltLY%3D&md5=224d0780685ddc9101ade978ce610965CAS | 7381563PubMed |
[7] R. Howman-Giles, P. J. Shaw, R. F. Uren, D. K. Chung, Semin. Nucl. Med. 2007, 37, 286.
| Crossref | GoogleScholarGoogle Scholar | 17544628PubMed |
[8] V. Rufini, M. L. Calcagni, R. P. Baum, Semin. Nucl. Med. 2006, 36, 228.
| Crossref | GoogleScholarGoogle Scholar | 16762613PubMed |
[9] T. A. Vik, T. Pfluger, R. Kadota, V. Castel, M. Tulchinsky, J. C. Farto, S. Heiba, A. Serafini, S. Tumeh, N. Khutoryansky, A. F. Jacobson, Pediatr. Blood Cancer 2009, 52, 784.
| Crossref | GoogleScholarGoogle Scholar | 19185008PubMed |
[10] J. M. Maris, M. D. Hogarty, R. Bagatell, S. L. Cohn, Lancet 2007, 369, 2106.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVKqtb0%3D&md5=e89cc2ccc3f2eff259c0a92b5013e24cCAS | 17586306PubMed |
[11] G. Papaioannou, K. McHugh, Cancer Imaging 2005, 5, 116.
| Crossref | GoogleScholarGoogle Scholar | 16305949PubMed |
[12] D. M. Wieland, Progress Clin. Perspect. 1986, 1, 117.
[13] G. Vaidyanathan, Q. J. Nucl. Med. Mol. Imaging 2008, 52, 351.
| 1:STN:280:DC%2BD1M%2Fjs1Ohsw%3D%3D&md5=9f2e85e5e384c6ce92050ea1e5316efaCAS | 19088690PubMed |
[14] G. Vaidyanathan, D. J. Affleck, K. L. Alston, P. Welsh, M. R. Zalutsky, Nucl. Med. Commun. 2004, 25, 947.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVarsb4%3D&md5=467bbeb3cbac654a3fa321b768503739CAS | 15319601PubMed |
[15] G. Vaidyanathan, S. Shankar, M. R. Zalutsky, Bioconjug. Chem. 2001, 12, 786.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVWjtbg%3D&md5=e3a1173f47ff2b3750df53976726c1edCAS | 11562197PubMed |
[16] J. D. Van den Berg, L. A. Smets, M. Rutgers, R. Fokkens, P. Jonkergouw, H. Van Rooij, Cancer Chemother. Pharmacol. 1997, 10, 131.
| Crossref | GoogleScholarGoogle Scholar |
[17] P. K. Garg, S. Garg, M. R. Zalutsky, Nucl. Med. Biol. 1994, 21, 97.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktlSjs70%3D&md5=5188740203233ab0d996dbd6510928b0CAS | 9234270PubMed |
[18] S. H. Oh, O. H. Lee, C. P. Schroeder, Y. W. Oh, S. Ke, H. J. Cha, R.-W. Park, A. Onn, R. S. Herbst, C. Li, H.-Y. Lee, Mol. Cancer Ther. 2006, 5, 2685.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1els7nI&md5=cf04cb1854448d583cbaff435e6f486bCAS | 17121915PubMed |
[19] G. Vaidyanathan, D. J. Affleck, M. R. Zalutsky, J. Med. Chem. 1994, 37, 3655.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsFSltQ%3D%3D&md5=2c828e6c424d81d3094666c8564f0d88CAS | 7932592PubMed |
[20] G. Vaidyanathan, M. R. Zalutsky, Bioconjug. Chem. 1992, 3, 499.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtVyju7w%3D&md5=7ee9bedcb3d455b7621802439ba9b563CAS | 1463779PubMed |
[21] D. S. Dodd, A. P. Kozikowski, Tetrahedron Lett. 1994, 35, 977.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisVCju74%3D&md5=f8f5bd9b3530b8b718940e6589e998ecCAS |
[22] W. Wang, S. Ke, Q. Wu, C. Charnsangavej, M. Gurfinkel, J. G. Gelovani, J. L. Abbruzzese, E. M. Sevick-Muraca, Mol. Imaging 2004, 3, 343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitFymu7s%3D&md5=7ce0d7e0332cdbc8e8989fbdf15a66abCAS | 15802051PubMed |