Ru/MgO-catalysed selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
Priya Lokhande A B C , Paresh L. Dhepe A B * , Karen Wilson D * and Adam F. Lee D *A
B
C
D
Handling Editor: Curt Wentrup
Abstract
Biomass valorisation through the selective oxidation of carbohydrate and lipid derivatives offers access to an array of platform chemicals through energy- and atom-efficient catalytic processes. Supported metal nanoparticles are promising catalysts for the aerobic selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), but typically require strong liquid base to achieve high selectivity. Here, we explore the utility of MgO as a solid base support for the Ru-catalysed aerobic oxidation of HMF, obtaining 68% FDCA yield at 160°C and 1.5 MPa of O2 using <1 mol-% metal.
Keywords: bifunctional, biomass, catalysis, MgO, monomer, oxidation, platform chemical, ruthenium.
References
1 Tickner J, Geiser K, Baima S. Transitioning the chemical industry: the case for addressing the climate, toxics, and plastics crises. Environ Sci Pollut Res Dev 2021; 63(6): 4-15.
| Crossref | Google Scholar |
2 Vogt ETC, Weckhuysen BM. The refinery of the future. Nature 2024; 629(8011): 295-306.
| Crossref | Google Scholar | PubMed |
3 Zhang X, Wilson K, Lee AF. Heterogeneously catalyzed hydrothermal processing of C5–C6 sugars. Chem Rev 2016; 116(19): 12328-12368.
| Crossref | Google Scholar | PubMed |
4 Gallezot P. Conversion of biomass to selected chemical products. Chem Soc Rev 2012; 41(4): 1538-1558.
| Crossref | Google Scholar |
5 Mitchell S, Martín AJ, Guillén-Gosálbez G, Pérez-Ramírez J. The future of chemical sciences is sustainable. Angew Chem Int Ed 2024; 63: e202318676.
| Crossref | Google Scholar |
6 Chheda JN, Huber GW, Dumesic JA. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 2007; 46(38): 7164-7183.
| Crossref | Google Scholar |
7 Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s ‘top 10’ revisited. Green Chem 2010; 12(4): 539-554.
| Crossref | Google Scholar |
8 Gandini A, Silvestre AJ, Neto CP, Sousa AF, Gomes M. The furan counterpart of poly(ethylene terephthalate): an alternative material based on renewable resources. J Polym Sci A Polym Chem 2009; 47(1): 295-298.
| Crossref | Google Scholar |
9 Gandini A. Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress. Polym Chem 2010; 1(3): 245-251.
| Google Scholar |
10 van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 2013; 113(3): 1499-1597.
| Crossref | Google Scholar | PubMed |
12 de Jong E, Visser HA, Dias AS, Harvey C, Gruter G-JM. The road to bring FDCA and PEF to the market. Polymers 2022; 14(5): 943.
| Crossref | Google Scholar | PubMed |
13 Eerhart A, Faaij A, Patel MK. Replacing fossil-based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ Sci 2012; 5(4): 6407-6422.
| Crossref | Google Scholar |
14 Zhang Z, Deng K. Recent advances in the catalytic synthesis of 2,5-furandicarboxylic acid and its derivatives. ACS Catal 2015; 5(11): 6529-6544.
| Crossref | Google Scholar |
15 Yi G, Teong SP, Zhang Y. The direct conversion of sugars into 2,5-furandicarboxylic acid in a triphasic system. ChemSusChem 2015; 8(7): 1151-1155.
| Crossref | Google Scholar |
16 Wang S, Zhang Z, Liu B. Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable Fe3O4–CoOx magnetite nanocatalyst. ACS Sustain Chem Eng 2015; 3(3): 406-412.
| Crossref | Google Scholar |
17 Casanova O, Iborra S, Corma A. Biomass into chemicals: aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. ChemSusChem 2009; 2(12): 1138-1144.
| Crossref | Google Scholar | PubMed |
18 Davis SE, Houk LR, Tamargo EC, Datye AK, Davis RJ. Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catal Today 2011; 160(1): 55-60.
| Crossref | Google Scholar |
19 Gupta NK, Nishimura S, Takagaki A, Ebitani K. Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure. Green Chem 2011; 13(4): 824-827.
| Crossref | Google Scholar |
20 Gorbanev YY, Klitgaard SK, Woodley JM, Christensen CH, Riisager A. Gold-catalyzed aerobic oxidation of 5-hydroxymethylfurfural in water at ambient temperature. ChemSusChem 2009; 2(7): 672-675.
| Crossref | Google Scholar | PubMed |
21 Pasini T, Piccinini M, Blosi M, Bonelli R, Albonetti S, Dimitratos N, Lopez-Sanchez JA, Sankar M, He Q, Kiely CJ. Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold–copper nanoparticles. Green Chem 2011; 13(8): 2091-2099.
| Google Scholar |
22 Diamond G, Hagemeyer A, Murphy V, Sokolovskii V. Catalytic conversion of biorenewable sugar feedstocks into market chemicals. Comb Chem High T Scr 2018; 21(9): 616-630.
| Crossref | Google Scholar |
23 Kuster B. 5‐Hydroxymethylfurfural (HMF). A review focussing on its manufacture. Starch‐Stärke 1990; 42(8): 314-321.
| Crossref | Google Scholar |
24 Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P, Ros P, Avignon G. Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites. Appl Catal A 1996; 145(1–2): 211-224.
| Crossref | Google Scholar |
25 Chheda JN, Román-Leshkov Y, Dumesic JA. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 2007; 9(4): 342-350.
| Google Scholar |
26 Moliner M, Román-Leshkov Y, Davis ME. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc Natl Acad Sci USA 2010; 107(14): 6164-6168.
| Crossref | Google Scholar | PubMed |
27 Patil SK, Heltzel J, Lund CR. Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde. Energ Fuel 2012; 26(8): 5281-5293.
| Crossref | Google Scholar |
28 Osatiashtiani A, Lee AF, Brown DR, Melero JA, Morales G, Wilson K. Bifunctional SO4/ZrO2 catalysts for 5-hydroxymethylfufural (5-HMF) production from glucose. Catal Sci Technol 2014; 4(2): 333-342.
| Google Scholar |
29 Osatiashtiani A, Lee AF, Granollers M, Brown DR, Olivi L, Morales G, Melero JA, Wilson K. Hydrothermally stable, conformal, sulfated zirconia monolayer catalysts for glucose conversion to 5-HMF. Acs Catal 2015; 5(7): 4345-4352.
| Google Scholar |
30 Partenheimer W, Grushin VV. Synthesis of 2,5-diformylfuran and furan-2,5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. Unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal bromide catalysts. Adv Synth Catal 2001; 343(1): 102-111.
| Crossref | Google Scholar |
31 Zheng L, Zhao J, Du Z, Zong B, Liu H. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts. Sci China Chem 2017; 60(7): 950-957.
| Crossref | Google Scholar |
32 Nie J, Xie J, Liu H. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts. J Catal 2013; 301: 83-91.
| Crossref | Google Scholar |
33 Sahu R, Dhepe PL. Synthesis of 2,5-furandicarboxylic acid by the aerobic oxidation of 5-hydroxymethyl furfural over supported metal catalysts. React Kinet Mech Catal 2014; 112(1): 173-187.
| Crossref | Google Scholar |
34 Ait Rass H, Essayem N, Besson M. Selective aerobic oxidation of 5-HMF into 2,5-furandicarboxylic acid with Pt catalysts supported on TiO2- and ZrO2-based supports. ChemSusChem 2015; 8(7): 1206-1217.
| Crossref | Google Scholar | PubMed |
35 Lolli A, Maslova V, Bonincontro D, Basile F, Ortelli S, Albonetti S. Selective oxidation of HMF via catalytic and photocatalytic processes using metal-supported catalysts. Molecules 2018; 23(11): 2792.
| Crossref | Google Scholar | PubMed |
36 Lokhande P, Sonone K, Dhepe PL. Industry-oriented method for the aqueous phase oxidation of crude 5-hydroxymethyl furfural (HMF) to 2,5-furandicarboxylic acid (FDCA). New J Chem 2023; 47(32): 15325-15335.
| Crossref | Google Scholar |
37 Jiang X, Li W, Liu Y, Zhao L, Chen Z, Zhang L, Zhang Y, Yun S. Electrocatalytic oxidation of 5-hydroxymethylfurfural for sustainable 2,5-furandicarboxylic acid production – from mechanism to catalysts design. SusMat 2023; 3(1): 21-43.
| Crossref | Google Scholar |
38 Lie WH, Yang Y, Yuwono JA, Tsounis C, Zubair M, Wright J, Thomsen L, Kumar P, Bedford N. Identification of catalytic activity descriptors for selective 5-hydroxymethyl furfural electrooxidation to 2,5-furandicarboxylic acid. J Mater Chem 2023; 11(11): 5527-5539.
| Crossref | Google Scholar |
39 Ma Z, Wang L, Li G, Song T. Recent advances in electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid by heterogeneous catalysts. Catal 2024; 14(2): 157.
| Google Scholar |
40 Schade OR, Dannecker P-K, Kalz KF, Steinbach D, Meier MAR, Grunwaldt J-D. Direct catalytic route to biomass-derived 2,5-furandicarboxylic acid and its use as monomer in a multicomponent polymerization. ACS Omega 2019; 4(16): 16972-16979.
| Crossref | Google Scholar | PubMed |
41 Li L, Hu Y, Li H, Hu P, Xue Z, Wu D, Hu C, Zhu L. Probing the formation of soluble humins in catalytic dehydration of fructose to 5-hydroxymethylfurfural over HZSM-5 catalyst. Fuel 2023; 344: 128133.
| Crossref | Google Scholar |
42 Gupta NK, Nishimura S, Takagaki A, Ebitani K. Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure. Green Chem 2011; 13(4): 824-827.
| Crossref | Google Scholar |
43 Ardemani L, Cibin G, Dent AJ, Isaacs MA, Kyriakou G, Lee AF, Parlett C, Parry SA, Wilson K. Solid base catalysed 5-HMF oxidation to 2,5-FDCA over Au/hydrotalcites: fact or fiction? Chem Sci 2015; 6(8): 4940-4945.
| Crossref | Google Scholar | PubMed |
44 Yuan Q, Hiemstra K, Meinds TG, Chaabane I, Tang Z, Rohrbach L, Vrijburg W, Verhoeven T, Hensen EJM, van der Veer S, et al. Bio-based chemicals: selective aerobic oxidation of tetrahydrofuran-2,5-dimethanol to tetrahydrofuran-2,5-dicarboxylic acid using hydrotalcite-supported gold catalysts. ACS Sustain Chem Eng 2019; 7(5): 4647-4656.
| Crossref | Google Scholar |
45 Cai C, Xu J, Wang H, Xin H, Zhang Q, Wang C, Ma L, Liu Q. Homogeneous base-free oxidation of 5-hydroxymethyfufural to 2,5-furandicarboxylic acid over Au/Mg(OH)2 catalysts. ChemistrySelect 2020; 5(41): 12785-12790.
| Crossref | Google Scholar |
46 Han X, Geng L, Guo Y, Jia R, Liu X, Zhang Y, Wang Y. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Pt/C–O–Mg catalyst. Green Chem 2016; 18(6): 1597-1604.
| Crossref | Google Scholar |
47 Mani M, Mariyaselvakumar M, Tothadi S, Panda AB, Srinivasan K, Konwar LJ. Base free HMF oxidation over Ru-MnO2 catalysts revisited: evidence of Mn leaching to Mn-FDCA complexation and its implications on catalyst performance. Mol Catal 2024; 554: 113811.
| Crossref | Google Scholar |
48 Zhang W, Li Q, Xia H. Photocatalytic oxidation of 5-hydroxymethylfurfural to furandicarboxylic acid over the Au-Ag/TiO2 catalysts under visible light irradiation. Appl Surf Sci 2023; 613: 156036.
| Crossref | Google Scholar |
49 Zhu P, Zhang W, Li Q, Xia H. Visible-light-driven photocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over plasmonic Au/ZnO catalyst. ACS Sustain Chem Eng 2022; 10(27): 8778-8787.
| Crossref | Google Scholar |
50 Yamaguchi K, Mizuno N. Efficient heterogeneous aerobic oxidation of amines by a supported ruthenium catalyst. Angew Chem Int Ed 2003; 42(13): 1480-1483.
| Crossref | Google Scholar |
51 Berkowitz LM, Rylander PN. Use of ruthenium tetroxide as a multi-purpose oxidant. J Am Chem Soc 1958; 80(24): 6682-6684.
| Crossref | Google Scholar |
52 Matsumoto M, Kobayashi K, Hotta Y. Acid-catalyzed oxidation of benzaldehydes to phenols by hydrogen peroxide. J Org Chem 1984; 49(24): 4740-4741.
| Crossref | Google Scholar |
53 Madhavaram H, Idriss H, Wendt S, Kim YD, Knapp M, Over H, Aßmann J, Löffler E, Muhler M. Oxidation reactions over RuO2: a comparative study of the reactivity of the (110) single crystal and polycrystalline surfaces. J Catal 2001; 202(2): 296-307.
| Crossref | Google Scholar |
54 Kobayashi S, Miyamura H, Akiyama R, Ishida T. Highly active, immobilized ruthenium catalysts for oxidation of alcohols to aldehydes and ketones. preparation and use in both batch and flow systems. J Am Chem Soc 2005; 127(25): 9251-9254.
| Crossref | Google Scholar | PubMed |
55 Pagliaro M, Campestrini S, Ciriminna R. Ru-based oxidation catalysis. Chem Soc Rev 2005; 34(10): 837-845.
| Crossref | Google Scholar | PubMed |
56 Yu H, Fu X, Zhou C, Peng F, Wang H, Yang J. Capacitance dependent catalytic activity of RuO2·xH2O/CNT nanocatalysts for aerobicoxidation of benzyl alcohol. Chem Commun 2009; 2009(17): 2408-2410.
| Crossref | Google Scholar | PubMed |
57 Gorbanev YY, Kegnæs S, Riisager A. Selective aerobic oxidation of 5-hydroxymethylfurfural in water over solid ruthenium hydroxide catalysts with magnesium-based supports. Catal Lett 2011; 141(12): 1752-1760.
| Crossref | Google Scholar |
58 Antonyraj CA, Huynh NTT, Lee KW, Kim YJ, Shin S, Shin JS, Cho JK. Base-free oxidation of 5-hydroxymethyl-2-furfural to 2,5-furandicarboxylic acid over basic metal oxide-supported ruthenium catalysts under aqueous conditions. J Chem Sci 2018; 130(11): 156.
| Crossref | Google Scholar |
59 Ståhlberg T, Eyjólfsdóttir E, Gorbanev YY, Sádaba I, Riisager A. Aerobic oxidation of 5-(hydroxymethyl)furfural in ionic liquids with solid ruthenium hydroxide catalysts. Catal Lett 2012; 142(9): 1089-1097.
| Crossref | Google Scholar |
60 Artz J, Mallmann S, Palkovits R. Selective aerobic oxidation of HMF to 2,5-diformylfuran on covalent triazine frameworks-supported Ru catalysts. ChemSusChem 2015; 8(4): 672-679.
| Crossref | Google Scholar |
61 Ferraz CP, Zieliński M, Pietrowski M, Heyte S, Dumeignil F, Rossi LM, Wojcieszak R. Influence of support basic sites in green oxidation of biobased substrates using Au-promoted catalysts. ACS Sustain Chem Eng 2018; 6(12): 16332-16340.
| Crossref | Google Scholar |
62 Wojcieszak R, Itabaiana I. Engineering the future: perspectives in the 2,5-furandicarboxylic acid synthesis. Catal Today 2020; 354: 211-217.
| Crossref | Google Scholar |
63 Wang JA, Novaro O, Bokhimi X, López T, Gómez R, Navarrete J, Llanos ME, López-Salinas E. Structural defects and acidic and basic sites in sol–gel MgO. J Phys Chem B 1997; 101(38): 7448-7451.
| Crossref | Google Scholar |
64 Branda MM, Belelli PG, Ferullo RM, Castellani NJ. Proton abstraction ability of MgO: a DFT cluster model study of the role of surface geometry. Catal Today 2003; 85(2): 153-165.
| Crossref | Google Scholar |
65 Spoto G, Gribov EN, Ricchiardi G, Damin A, Scarano D, Bordiga S, Lamberti C, Zecchina A. Carbon monoxide MgO from dispersed solids to single crystals: a review and new advances. Prog Surf Sci 2004; 76(3): 71-146.
| Crossref | Google Scholar |
66 Lokhande P, Dhepe PL. Selective and robust Ru catalyst for the aqueous phase aerobic oxidation of furfural to 2-furoic acid. ACS Appl Mater Interfaces 2023; 15(40): 47004-47015.
| Crossref | Google Scholar | PubMed |
67 Schüth F, Ward MD, Buriak JM. Common pitfalls of catalysis manuscripts submitted to chemistry of materials. Chem Mater 2018; 30(11): 3599-3600.
| Crossref | Google Scholar |
68 Zope BN, Davis SE, Davis RJ. Influence of reaction conditions on diacid formation during Au-catalyzed oxidation of glycerol and hydroxymethylfurfural. Top Catal 2012; 55(1): 24-32.
| Crossref | Google Scholar |
69 Albonetti S, Lolli A, Morandi V, Migliori A, Lucarelli C, Cavani F. Conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au-based catalysts: optimization of active phase and metal–support interaction. Appl Catal B 2015; 163: 520-530.
| Crossref | Google Scholar |
70 Vuyyuru KR, Strasser P. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catal Today 2012; 195(1): 144-154.
| Crossref | Google Scholar |
71 Chadderdon DJ, Xin L, Qi J, Qiu Y, Krishna P, More KL, Li W. Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles. Green Chem 2014; 16(8): 3778-3786.
| Crossref | Google Scholar |
72 Zhou C, Deng W, Wan X, Zhang Q, Yang Y, Wang Y. Functionalized carbon nanotubes for biomass conversion: the base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over platinum supported on a carbon nanotube catalyst. ChemCatChem 2015; 7(18): 2853-2863.
| Crossref | Google Scholar |
73 Davis SE, Zope BN, Davis RJ. On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts. Green Chem 2012; 14(1): 143-147.
| Crossref | Google Scholar |
74 Zope BN, Hibbitts DD, Neurock M, Davis RJ. Reactivity of the gold/water interface during selective oxidation catalysis. Science 2010; 330(6000): 74-78.
| Crossref | Google Scholar |