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Figure S1. SWOT analysis for the oxidation of HMF to FDCA.

Catalyst characterisation

Powder X-ray diffractograms were recorded on Rigaku D MAX spectrometer using Cu K, radiation (A = 1.5418 A)
between 5 and 90° at a scan rate of 2° min~t. Transmission electron micrographs were obtained using a FEI TECNAI
T20 microscope with an accelerating voltage of 200 kV; samples were dispersed in isopropyl alcohol by ultrasonication
and drop cast on a carbon-coated copper grid. Textural properties were determined by N, physisorption at —196°C using
a Quantachrome Autosorb iQ porosimeter; samples were degassed in vacuo at 150°C for 3 h, with specific surface areas
determined by the BET method and mean pore diameters calculated by the BJH method applied to the desorption
isotherms. Solid base properties were determined by temperature-programmed desorption of a saturated CO, adlayer
using a Micromeritics Autochem-2920 instrument: samples were first annealed at 400°C under 40 mL min-! He for 1 h,
then cooled to 50°C under He, prior to exposure to 30 mL min of 10 vol% CO; in He for 0.5 h; the sample was then
heated to 100°C and flushed with flowing He at 100°C for 1 h to remove physisorbed CO>; desorption of chemisorbed
CO; was performed by annealing at 10°C min-! under 40 mL min* He from 100 to 800°C with desorption monitored

by a thermal conductivity detector.



b)

Count

)0.5% Ru/MgO fresh |

G0

0+

40+

30

20+

EZ57 Length

20 a0

vg particle size=20.01 nm

Diameter (nm)

0.5% Ru/MgO fresh (Avg particle size 20.01nm)

)

Figure S2. (a) TEM images of 0.5wt% Ru/Mg0-300-2h and (b) corresponding Ru particle size distribution.

HMF oxidation

Table S1. Literature review of previous catalytic systems for the oxidation of HMF to FDCA.

Catalyst Temperature | O.pressure | Time HMF FDCA yield | References
(°C) (bar) (h) | conversion (%)
(%)

Ru/MgO.La,0s 140 2.5 6 99 96 S
2 wt% Ru/MgAIO 140 6 4 100 99 2l
Au/CeO; (w. NaOH) 130 5 3 100 88 3]
AU/HT 95 10 7 99 98 4
10 wt% Au/HT 90 1 - 98 78 5]
Pt/C-O-Mg 110 10 12 100 96 (6]
Pd/C@Fes04 80 1 6 98 96 7]
Homogeneous Co,Mn and K 180 30 0.5 90 90 (€1
salts in acetic acid

Pt/y-Al;O3 140 10 24 96 96 (1




Table S2. Impact of Ru metal loading (%) for the oxidation of HMF to FDCA.

Catalyst HMF FDCA | HMFCA | FFCA | DFF yield | Unidentified
Conversion | yield yield yield (%) products
(%) (%) (%) (%) (%)
0.1 wt% Ru/MgO 300°C 4 h 90 44 9 17 12 8
0.5 wt% Ru/MgO 300°C 4 h 96 68 4 9 10 5
1 wt% Ru/MgO 300°C 4 h 100 80 2 4 9 5
5 wt% Ru/MgO 300°C 4 h 100 88 2 1 4 5

Reaction conditions: 4 mmol of HMF, 15 bar O, Ru/MgO 300°C 4 h (substrate:metal molar ratio=120), 30 mL of deionised water,

160°C, 6.5 h.

Table S3. Controlled reactions for the oxidation of HMF to FDCA.

Control HMF FDCA | HMFCA | FFCA | DFF yield | Unidentified
Conversion | vyield yield yield (%) products
(%) (%) (%) (%) (%)
No catalyst 25 12 2 4 - 7
No oxygen 16 7 1 3 - 5

Reaction conditions: 4 mmol HMF, 30 mL of deionised water, 160°C, 6.5 h. No catalyst: 15 bar O,. No oxygen: Ru/MgO 300°C

4 h (substrate:metal molar ratio=120).

FDCA isolation and characterisation

The post-reaction mixture was centrifuged to remove the solid catalyst, and subsequently acidified to a pH of 2-3 using

0.1 M HCI. Ethyl acetate was then added to extract FDCA from the aqueous phase, and the ester subsequently evaporated
to yielding solid FDCA. *H NMR (Figure S3), *C NMR (Figure S4), HRMS (Figure S5) and FTIR (Figure S6)
evidenced that the isolated FDCA was >99% pure.
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Figure S3. *H NMR spectrum of isolated FDCA obtained after the reaction. Solvent: DMSO.
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Figure S4. 3C NMR spectrum of isolated FDCA obtained after the reaction. Solvent: DMSO.
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Figure S6. (top) FTIR spectrum of isolated FDCA obtained post-reaction: (v em™) 3151, 3125 (-OH); 1701 (C=0);
1571, 1423 (furan Ring —C=C-); 1274 (ester—C—0O-), 1228 (furan ring —C-0); 962, 853, 762 (=CH). (bottom)
reference spectra from Chemical Book (https://www.chemicalbook.com/SpectrumEN_3238-40-2_IR2.htm) on non-

linear wavenumber scale.
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