Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Counterpoise correction from a practical perspective: is the result worth the cost?

Bun Chan https://orcid.org/0000-0002-0082-5497 A B * and Junming Ho https://orcid.org/0000-0001-9381-924X C
+ Author Affiliations
- Author Affiliations

A Graduate School of Engineering, Nagasaki University, Bunkyo-Machi 1-14, Nagasaki 852-8521, Japan.

B RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, 650-0047, Japan.

C School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.

* Correspondence to: bun.chan@nagasaki-u.ac.jp

Handling Editor: Amir Karton

Australian Journal of Chemistry 76(12) 864-874 https://doi.org/10.1071/CH23101
Submitted: 26 May 2023  Accepted: 23 August 2023  Published online: 13 September 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing.

Abstract

In the present study, we have examined the utility of counterpoise (CP) corrections, the zero-cost geometric counterpoise (gCP) correction, and the double-ζ vDZP basis set, in representative examples of computational chemistry investigations. The tests include reaction energies and barriers in mechanisms of catalysis, and binding of substrates with enzyme active sites. Drawbacks of the CP approach include: it is more costly than calculations with the same basis set without applying CP corrections, multiple computations may be required where a single species is used in multiple instances, and it is only applicable to intermolecular interactions. In comparison, using gCP or vDZP is less costly. Their overall accuracy is comparable to CP, although the three approaches show variable performances for different systems. Thus, the use of a large basis set remains more consistent in obtaining results that are closer to the basis-set limit. Where the computational cost poses a challenge, the use of gCP or vDZP would be more advantageous than CP in terms of cost and simplicity.

Keywords: ab initio calculations, density functional calculations, computational efficiency, counterpoise correction, gCP correction, intermolecular interactions, reaction mechanism, small optimized basis set.

References

Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. J Phys Chem 1994; 98: 11623-11627.
| Crossref |

Ditchfield R, Hehre WJ, Pople JA. J Chem Phys 1971; 54: 724-728.
| Crossref |

Pople JA, Head-Gordon M, Raghavachari K. J Chem Phys 1987; 87: 5968-5975.
| Crossref |

McLean AD, Chandler GS. J Chem Phys 1980; 72: 5639-5648.
| Crossref |

Dunning Jr TH. J Chem Phys 1989; 90: 1007-1023.
| Crossref |

Chan B. J Chem Theory Comput 2018; 14: 4254-4262.
| Crossref | PubMed |

Chan B. J Phys Chem A 2019; 123: 5781-5788.
| Crossref | PubMed |

Chan B. J Phys Chem A 2020; 124: 582-590.
| Crossref | PubMed |

Chan B. J Phys Chem A 2020; 124: 6688-6698.
| Crossref | PubMed |

10  Chan B. Int J Quantum Chem 2021; 211: e26453.
| Crossref |

11  Chan B. J Chem Theory Comput 2021; 17: 5704-5714.
| Crossref | PubMed |

12  Chan B, Dawson W, Nakajima T. J Phys Chem A 2022; 126: 2397-2406.
| Crossref | PubMed |

13  Chan B. J Phys Chem A 2022; 126: 4981-4990.
| Crossref | PubMed |

14  Mardirossian N, Head-Gordon M. Mol Phys 2017; 115: 2315-2372.
| Crossref |

15  Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A, Grimme S. Phys Chem Chem Phys 2017; 19: 32184-32215.
| Crossref | PubMed |

16  Yu HS, He X, Li SL, Truhlar DG. Chem Sci 2016; 7: 5032-5051.
| Crossref | PubMed |

17  Mardirossian N, Head-Gordon M. J Chem Phys 2016; 144: 214110.
| Crossref | PubMed |

18  Chan B. Pure Appl Chem 2017; 89: 699-713.
| Crossref |

19  Chan B. J Chem Theory Comput 2017; 13: 2642-2649.
| Crossref | PubMed |

20  Chen J, Chan B, Shao Y, Ho J. Phys Chem Chem Phys 2020; 22: 3855-3866.
| Crossref | PubMed |

21  Chan B, Karton A. J Comput Chem 2022; 43: 1394-1402.
| Crossref | PubMed |

22  Boys SF, Bernardi F. Mol Phys 1970; 19: 553-566.
| Crossref |

23  Řezáč J, Hobza P. Chem Rev 2016; 116: 5038-5071.
| Crossref | PubMed |

24  Shamovsky IL, Riopelle RJ, Ross GM. J Phys Chem A 2001; 105: 1061-1070.
| Crossref |

25  Zhao Y, Truhlar DG. Org Lett 2007; 9: 1967-1970.
| Crossref | PubMed |

26  Teusch T, Klüner T. J Phys Chem C 2019; 123: 28233-28240.
| Crossref |

27  Kobko N, Dannenberg JJ. J Phys Chem A 2001; 105: 1944-1950.
| Crossref |

28  Alvarez-Idaboy JR, Galano A. Theor Chem Acc 2010; 126: 75-85.
| Crossref |

29  Mentel ŁM, Baerends EJ. J Chem Theory Comput 2014; 10: 252-267.
| Crossref | PubMed |

30  Burns LA, Marshall MS, Sherrill CD. J Chem Theory Comput 2014; 10: 49-57.
| Crossref | PubMed |

31  Neese F. WIREs Comput Mol Sci 2018; 8: e1327.
| Crossref |

32  Aresta M, Dibenedetto A, Fracchiolla E, Giannoccaro P, Pastore C, Pápai I, Schubert G. J Org Chem 2005; 70: 6177-6186.
| Crossref | PubMed |

33  Castro-Gómez F, Salassa G, Kleij AW, Bo C. Chem Eur J 2013; 19: 6289-6298.
| Crossref | PubMed |

34  Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett 1996; 77: 3865-3868.
| Crossref | PubMed |

35  Adamo C, Barone V. J Chem Phys 1999; 110: 6158-6170.
| Crossref |

36  Müller M, Hansen A, Grimme S. J Chem Phys 2023; 158: 014103.
| Crossref | PubMed |

37  Rappoport D, Furche F. J Chem Phys 2010; 133: 134105.
| Crossref | PubMed |

38  Eichkorn K, Weigend F, Treutler O, Ahlrichs R. Theor Chem Acc 1997; 97: 119-124.
| Crossref |

39  Neese F, Wennmohs F, Hansen A, Becker U. Chem Phys 2009; 356: 98-109.
| Crossref |

40  Weigend F. Phys Chem Chem Phys 2006; 8: 1057-1065.
| Crossref | PubMed |

41  Kruse H, Grimme S. J Chem Phys 2012; 136: 154101.
| Crossref | PubMed |

42  Grimme S, Brandenburg JG, Bannwarth C, Hansen A. J Chem Phys 2015; 143: 054107.
| Crossref | PubMed |

43  Brandenburg JG, Bannwarth C, Hansen A, Grimme S. J Chem Phys 2018; 148: 064104.
| Crossref | PubMed |

44  Grimme S, Hansen A, Ehlert S, Mewes J-M. J Chem Phys 2021; 154: 064103.
| Crossref | PubMed |

45  Chan B. J Chem Theory Comput 2023; 19: 3958-3965.
| Crossref | PubMed |

46  Pagadala NS, Syed K, Tuszynski J. Biophys Rev 2017; 9: 91-102.
| Crossref | PubMed |

47  Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. Chem Rev 2015; 115: 5678-5796.
| Crossref | PubMed |

48  Zhao Y, Truhlar DG. Theor Chem Acc 2008; 120: 215-241.
| Crossref |