Electronic structure study of H3BXH3 (X═B, N and P) as hydrogen storage materials using calculated NMR and XPS spectra
Feng Wang A * and Delano P. Chong BA
B
Abstract
Boron-based materials have been used for hydrogen storage applications owing to their high volumetric and gravimetric hydrogen density. The present study quantum mechanically investigates the electronic structures of three compounds: diborane (DB, B2H6), ammonia borane (AB, H3BNH3) and phosphine borane (PB, H3BPH3). The exploration is facilitated using calculated nuclear magnetic resonance (NMR) chemical shifts, together with outer valence ionisation potentials (IP) and core electron binding energy (CEBE). The findings show a distinct electronic structure for diborane, differing notably from AB and PB, which exhibit certain similarities. Noteworthy dissimilarities are observed in the chemical environments of the bridge hydrogens and terminal hydrogens in diborane, resulting in a substantial chemical shift difference of up to 5.31 ppm. Conversely, in AB and PB, two distinct sets of hydrogens emerge: protic hydrogens (Hp–N and Hp–P) and hydridic hydrogens (Hh–B). This leads to chemical shifts as small as 0.42 ppm in AB and as significant as 3.0 ppm in PB. The absolute isotropic NMR shielding constant (σB) of 11B in DB is 85.40 ppm, in contrast to 126.21 ppm in AB and 151.46 ppm in PB. This discrepancy indicates that boron in PB has the most robust chemical environment among the boranes. This assertion finds support in the calculated CEBE for B 1s of 196.53, 194.01 and 193.93 eV for DB, AB and PB respectively. It is clear that boron in PB is the most reactive atom. Ultimately, understanding the chemical environment of the boranes is pivotal in the context of dehydrogenation processes for boron-based hydrogen storage materials.
Keywords: borane compounds, CEBE, core electron binding energy, DFT calculations, 1H proton and 11B NMR chemical shift–shielding constant, role of hydrogens and boron in boranes, valence ionisation energy spectrum.
References
1 Demirci UB. Ammonia borane: an extensively studied, though not yet implemented, hydrogen carrier. Energies 2020; 13(12): 3071.
| Crossref | Google Scholar |
2 Wang F, Swinbourn R, Li C. Shipping Australian sunshine: liquid renewable green fuel export. Int J Hydrogen Energy 2023; 48: 14763-14784.
| Crossref | Google Scholar |
3 Akbayrak S, Özkar S. Ammonia borane as hydrogen storage materials. Int J Hydrogen Energy 2018; 43(40): 18592-18606.
| Crossref | Google Scholar |
4 Li H, Yang Q, Chen X, Shore SG. Ammonia borane, past as prolog. J Organomet Chem 2014; 751: 60-66.
| Crossref | Google Scholar |
5 Welch GC, Stephan DW. Facile heterolytic cleavage of dihydrogen by phosphines and boranes. J Am Chem Soc 2007; 129(7): 1880-1881.
| Crossref | Google Scholar | PubMed |
6 Oldroyd NL, Chitnis SS, Annibale VT, Arz MI, Sparkes HA, Manners I. Metal-free dehydropolymerisation of phosphine-boranes using cyclic (alkyl)(amino)carbenes as hydrogen acceptors. Nat Commun 2019; 10(1): 1370.
| Crossref | Google Scholar | PubMed |
7 Cowley AH, Damasco MC. Donor–acceptor bond in phosphine–borane complexes. J Am Chem Soc 1971; 93(25): 6815-6821.
| Crossref | Google Scholar |
8 Sakai S. Theoretical study of the chemical reactions of B2H6 with Lewis bases (NH3, PH3, H2O, and H2S). J Phys Chem 1995; 99(22): 9080-9086.
| Crossref | Google Scholar |
9 Wang F, Pang W, Huang M. Valence space electron momentum spectroscopy of diborane. J Electron Spectrosc Relat Phenom 2006; 151(3): 215-223.
| Crossref | Google Scholar |
10 Demirci UB. Ammonia borane, a material with exceptional properties for chemical hydrogen storage. Int J Hydrogen Energy 2017; 42(15): 9978-10013.
| Crossref | Google Scholar |
11 Nordman CE, Reimann C. The molecular and crystal structures of ammonia–triborane. J Am Chem Soc 1959; 81(14): 3538-3543.
| Crossref | Google Scholar |
12 Nguyen VS, Matus MH, Nguyen MT, Dixon DA. Reactions of diborane with ammonia and ammonia borane: catalytic effects for multiple pathways for hydrogen release. J Phys Chem A 2008; 112(40): 9946-9954.
| Crossref | Google Scholar | PubMed |
13 Rudolph RW, Parry RW. Fluorophosphine ligands. IV. The apparent base strengths of difluorophosphine, trifluorophosphine, and phosphine toward the Lewis acid borane. J Am Chem Soc 1967; 89(7): 1621-1625.
| Crossref | Google Scholar |
14 Spikes GH, Fettinger JC, Power PP. Facile activation of dihydrogen by an unsaturated heavier main group compound. J Am Chem Soc 2005; 127(35): 12232-12233.
| Crossref | Google Scholar | PubMed |
15 Sarbajna A, Swamy V, Gessner VH. Phosphorus ylides: powerful substituents for the stabilization of reactive main group compounds. Chem Sci 2020; 12(6): 2016-2024.
| Crossref | Google Scholar | PubMed |
16 Wolf G, Baumann J, Baitalow F, Hoffmann FP. Calorimetric process monitoring of thermal decomposition of B–N–H compounds. Thermochim Acta 2000; 343(1–2): 19-25.
| Crossref | Google Scholar |
17 Nielsen TK, Besenbacher F, Jensen TR. Nanoconfined hydrides for energy storage. Nanoscale 2011; 3(5): 2086-2098.
| Crossref | Google Scholar | PubMed |
18 Ramachandran PV, Drolet MP, Kulkarni AS. A non-dissociative open-flask hydroboration with ammonia borane: ready synthesis of ammonia–trialkylboranes and aminodialkylboranes. Chem Commun 2016; 52(80): 11897-11900.
| Crossref | Google Scholar | PubMed |
19 Züttel A. Materials for hydrogen storage. Mater Today 2003; 6(9): 24-33.
| Crossref | Google Scholar |
20 Staubitz A, Robertson AP, Sloan ME, Manners I. Amine− and phosphine−borane adducts: new interest in old molecules. Chem Rev 2010; 110(7): 4023-4078.
| Crossref | Google Scholar | PubMed |
21 Dixon DA, Gutowski M. Thermodynamic properties of molecular borane amines and the [BH4–][NH4+] salt for chemical hydrogen storage systems from ab initio electronic structure theory. J Phys Chem A 2005; 109(23): 5129-5135.
| Crossref | Google Scholar | PubMed |
22 Chong DP, Wang F. Dehydrogenation of ammonia borane impacts valence and core electrons: a photoemission spectroscopic study. ACS Omega 2022; 7(40): 35924-35932.
| Crossref | Google Scholar | PubMed |
23 Schleier D, Gerlach M, Pratim Mukhopadhyay D, Karaev E, Schaffner D, Hemberger P, Fischer I. Ammonia borane, NH3BH3: a threshold photoelectron–photoion coincidence study of a potential hydrogen-storage material. Chem Eur J 28(42): e202201378.
| Crossref | Google Scholar |
24 Hill A, Wang F. Intramolecular O···H hydrogen bonding of salicylic acid: further insights from O 1s XPS and 1H NMR spectra using DFT calculations. J Phys Chem A 2023; 127(12): 2705-2716.
| Crossref | Google Scholar | PubMed |
25 Segala M, Chong DP. An evaluation of exchange-correlation functionals for the calculations of the ionization energies for atoms and molecules. J Electron Spectrosc Relat Phenom 2009; 171(1): 18-23.
| Crossref | Google Scholar |
26 Chong DP. Density functional calculation of core-electron binding energies of glycine conformers. Can J Chem 1996; 74(6): 1005-1007.
| Crossref | Google Scholar |
29 Mallajosyula SS, Datta A, Pati SK. Conformational preference in heteroatomic analogues of ethane, H3X−YH3 (X = B, AL; Y = N, P): implicationsof charge transfer. J Phys Chem A 2006; 110(15): 5156-5163.
| Crossref | Google Scholar | PubMed |
30 Mo Y, Wu W, Song L, Lin M, Zhang Q, Gao J. The magnitude of hyperconjugation in ethane: a perspective from ab initio valence bond theory. Angew Chem Int Ed Engl 2004; 43(15): 1986-1990.
| Crossref | Google Scholar | PubMed |
31 Cho H, Shaw WJ, Parvanov V, Schenter GK, Karkamkar A, Hess NJ, Mundy C, Kathmann S, Sears J, Lipton AS, et al. Molecular structure and dynamics in the low temperature (orthorhombic) phase of NH3BH3. J Phys Chem A 2008; 112(18): 4277-4283.
| Crossref | Google Scholar | PubMed |
32 Stitt F. The gaseous heat capacity and restricted internal rotation of diborane. J Chem Phys 1940; 8(12): 981-986.
| Crossref | Google Scholar |
33 Anane H, El Houssame S, El Guerraze A, Jarid A, Boutalib A, Nebot-Gil I, Tomás F. Ab initio molecular orbital study of the substituent effect on ammonia and phosphine–borane complexes. J Mol Struct 2004; 709(1): 103-107.
| Crossref | Google Scholar |
35 Matus MH, Grant DJ, Nguyen MT, Dixon DA. Fundamental thermochemical properties of ammonia borane and dehydrogenated derivatives (BNHn, n = 0−6). J Phys Chem C 2009; 113(37): 16553-16560.
| Crossref | Google Scholar |
36 Durig JR, Li YS, Carreira IA, Odom JD. Microwave spectrum, structure, dipole moment, and barrier to internal rotation of phosphine–borane. J Am Chem Soc 1973; 95(8): 2491-2496.
| Crossref | Google Scholar |
37 Burrus CA. Stark effect from 1.1 to 2.6 millimeters wavelength: PH3, PD3, DI, and CO. J Chem Phys 1958; 28(3): 427-429.
| Crossref | Google Scholar |
38 Roy B, Pal U, Bishnoi A, O’Dell LA, Sharma P. Exploring the homopolar dehydrocoupling of ammonia borane by solid-state multinuclear NMR spectroscopy. Chem Commun 2021; 57(15): 1887-1890.
| Crossref | Google Scholar | PubMed |
39 Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 2010; 9(3): 203-214.
| Crossref | Google Scholar | PubMed |
40 McWeeny R. Perturbation theory for the Fock–Dirac density matrix. Phys Rev 1962; 126(3): 1028-1034.
| Crossref | Google Scholar |
41 Ditchfield R. Self-consistent perturbation theory of diamagnetism. Mol Phys 1974; 27(4): 789-807.
| Crossref | Google Scholar |
42 Wolinski K, Hinton JF, Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 1990; 112(23): 8251-8260.
| Crossref | Google Scholar |
43 Cheeseman JR, Trucks GW, Keith TA, Frisch MJ. A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 1996; 104(14): 5497-5509.
| Crossref | Google Scholar |
44 Gao P, Wang X, Huang Z, Yu H. 11B NMR chemical shift predictions via density functional theory and gauge-including atomic orbital approach: applications to structural elucidations of boron-containing molecules. ACS Omega 2019; 4(7): 12385-12392.
| Crossref | Google Scholar | PubMed |
45 Jackowski K, Makulski W, Szyprowska A, Antusek A, Jaszuński M, Jusélius J. NMR shielding constants in BF3 and magnetic dipole moments of 11B and 10B nuclei. J Chem Phys 2009; 130(4): 044309.
| Crossref | Google Scholar | PubMed |
46 Staubitz A, Robertson APM, Manners I. Ammonia–borane and related compounds as dihydrogen sources. Chem Rev 2010; 110(7): 4079-4124.
| Crossref | Google Scholar | PubMed |
47 Shaw WJ, Linehan JC, Szymczak NK, Heldebrant DJ, Yonker C, Camaioni DM, Baker RT, Autrey T. In situ multinuclear NMR spectroscopic studies of the thermal decomposition of ammonia borane in solution. Angew Chem Int Ed Engl 2008; 47(39): 7493-7496.
| Crossref | Google Scholar | PubMed |
48 Sundholm D, Gauss J, Schäfer A. Rovibrationally averaged nuclear magnetic shielding tensors calculated at the coupled‐cluster level. J Chem Phys 1996; 105(24): 11051-11059.
| Crossref | Google Scholar |
49 Lantto P, Jackowski K, Makulski W, Olejniczak M, Jaszuński M. NMR shielding constants in PH3, absolute shielding scale, and the nuclear magnetic moment of 31P. J Phys Chem A 2011; 115(38): 10617-10623.
| Crossref | Google Scholar | PubMed |
50 Rzepa HS, Arkhipenko S, Wan E, Sabatini MT, Karaluka V, Whiting A, Sheppard TD. An accessible method for DFT calculation of 11B nmr shifts of organoboron compounds. J Org Chem 2018; 83(15): 8020-8025.
| Crossref | Google Scholar | PubMed |
51 Yuan B, Shin J-W, Bernstein ER. Dynamics and fragmentation of van der Waals and hydrogen bonded cluster cations: (NH3)n and (NH3BH3)n ionized at 10.51 eV. J Chem Phys 2016; 144(14): 144315.
| Crossref | Google Scholar | PubMed |
52 Carniato S, Millié P. Accurate core electron binding energy calculations using small 6-31G and TZV core hole optimized basis sets. J Chem Phys 2002; 116(9): 3521-3532.
| Crossref | Google Scholar |
53 Wang F. Future of computational molecular spectroscopy – from supporting interpretation to leading the innovation. Phys Chem Chem Phys 2023; 25: 7090-7105.
| Crossref | Google Scholar | PubMed |
55 Cederbaum LS. One-body Green’s function for atoms and molecules: theory and application. J Phys B 1975; 8(2): 290-303.
| Crossref | Google Scholar |
56 Lloyd DR, Lynaugh N. Photoelectron studies of boron compounds. Part 3.– Complexes of borane with Lewis bases. J Chem Soc Faraday Trans 2 1972; 68(0): 947-958.
| Crossref | Google Scholar |
57 Jolly WL, Finn P, Pearson RK, Hollander JM. Chemical shifts in core electron binding energies for some gaseous nitrogen compounds. Inorg Chem 1971; 10(2): 378-381.
| Crossref | Google Scholar |
58 Allison DA, Johansson G, Allan CJ, Gelius U, Siegbahn H, Allison J, Siegbahn K. Molecular spectroscopy by means of ESCA: V. Boron compounds. J Electron Spectrosc Relat Phenom 1972; 1(3): 269-283.
| Crossref | Google Scholar |
59 Beach DB, Jolly WL. Photoelectron spectroscopic study of the bonding in borane adducts. Inorg Chem 1985; 24(4): 567-570.
| Crossref | Google Scholar |