A New Strategy Using a Fluorescent Probe Combined with Polydopamine for Detecting the Activity of Acetylcholinesterase
Yingying Chen A , Wenxia Liu B , Binbin Zhang B , Zhiguang Suo A , Feifei Xing B and Lingyan Feng A CA Materials Genome Institute, Shanghai University, Shanghai 200444, China.
B Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.
C Corresponding author. Email: lingyanfeng@t.shu.edu.cn
Australian Journal of Chemistry 74(8) 607-612 https://doi.org/10.1071/CH21062
Submitted: 4 March 2021 Accepted: 22 May 2021 Published: 11 June 2021
Abstract
A water-soluble and sensitive fluorescent probe N,N′-bis[tris-(2-aminoethyl)amine]-3,4,9,10-perylenetetracarboxylic diimide (PTRIS) was synthesized and, in combination with polydopamine (PDA), utilised in the detection of acetylcholinesterase (AChE) activity. PDA is spontaneously polymerized from dopamine (DA) in aerobic and alkaline solutions. The excellent absorption of PDA results in the aggregation of PTRIS around PDA as well as π–π stacking between them, which consequently quenched the fluorescence of PTRIS due to aggregation induced quenching (AIQ) in 9 min. The hydrolysis product of acetylthiocholine (ATCh) catalyzed by AChE, thiocholine (TCh), was proved to inhibit the polymerization of DA, therefore the free monomeric PTRIS retained its strong fluorescence intensity. The fluorescence was switched off and on depending on the activity of AChE. According to the change of fluorescence intensity at 550 nm, the detection limit of AChE was quantified as 0.02 mU mL−1. It was also proved that this probe possessed excellent selectivity for AChE. Tacrine and the organophosphate pesticide diazinon were further evaluated for inhibitor screening. The half-maximal inhibitory concentration value of tacrine and diazinon was calculated to be 1.4 and 1.6 μM respectively, revealing potential applications for inhibition and pesticide detecting.
Keywords: acetylcholinesterase activity, fluorescent probe, dopamine, polydopamine, perylene derivative, inhibitor screening, analytical methods, aggregation induced quenching.
References
[1] J. H. Xuereb, E. K. Perry, J. M. Candy, J. R. Bonham, R. H. Perry, E. Marshall, J. Neurol. Sci. 1990, 99, 185.| Crossref | GoogleScholarGoogle Scholar | 1964958PubMed |
[2] D. R. Liston, J. A. Nielsen, A. Villalobos, D. Chapin, S. B. Jones, S. T. Hubbard, et al. Eur. J. Pharmacol. 2004, 486, 9.
| Crossref | GoogleScholarGoogle Scholar | 14751402PubMed |
[3] H. Soreq, S. Seidman, Nat. Rev. Neurosci. 2001, 2, 294.
| Crossref | GoogleScholarGoogle Scholar | 11283752PubMed |
[4] M. Wang, X. Gu, G. Zhang, D. Zhang, D. Zhu, Langmuir 2009, 25, 2504.
| Crossref | GoogleScholarGoogle Scholar | 19154124PubMed |
[5] F. Worek, P. Eyer, H. Thiermann, Drug Test. Anal. 2012, 4, 282.
| Crossref | GoogleScholarGoogle Scholar | 21998030PubMed |
[6] S. Sabelle, P. Y. Renard, K. Pecorella, S. de Suzzoni-Dezard, C. Creminon, J. Grassi, et al. J. Am. Chem. Soc. 2002, 124, 4874.
| Crossref | GoogleScholarGoogle Scholar | 11971738PubMed |
[7] D. Du, Y. Tao, W. Zhang, D. Liu, H. Li, Biosens. Bioelectron. 2011, 26, 4231.
| Crossref | GoogleScholarGoogle Scholar | 21514816PubMed |
[8] H. Maeda, H. Matsuno, M. Ushida, K. Katayama, K. Saeki, N. Itoh, Angew. Chem. Int. Ed. Engl. 2005, 44, 2922.
| Crossref | GoogleScholarGoogle Scholar | 15818626PubMed |
[9] X. Wang, T. Hou, S. Dong, X. Liu, F. Li, Biosens. Bioelectron. 2016, 77, 644.
| Crossref | GoogleScholarGoogle Scholar | 26492468PubMed |
[10] J. Xu, F. Q. Zhou, L. X. Chen, G. L. Chen, S. F. Pan, Z. S. Qian, et al. Sens. Actuators B Chem. 2018, 255, 22.
| Crossref | GoogleScholarGoogle Scholar |
[11] F. Feng, Y. Tang, S. Wang, Y. Li, D. Zhu, Angew. Chem. Int. Ed. Engl. 2007, 46, 7882.
| Crossref | GoogleScholarGoogle Scholar | 17768745PubMed |
[12] M. Wang, X. Gu, G. Zhang, D. Zhang, D. Zhu, Anal. Chem. 2009, 81, 4444.
| Crossref | GoogleScholarGoogle Scholar | 19374428PubMed |
[13] C. Li, H. Wonneberger, Adv. Mater. 2012, 24, 613.
| Crossref | GoogleScholarGoogle Scholar | 22228467PubMed |
[14] S. Chen, P. Slattum, C. Y. Wang, L. Zang, Chem. Rev. 2015, 115, 11967.
| Crossref | GoogleScholarGoogle Scholar | 26441294PubMed |
[15] F. Würthner, C. R. Saha-Möller, B. Fimmel, S. Ogi, P. Leowanawat, D. Schmidt, Chem. Rev. 2016, 116, 962.
| Crossref | GoogleScholarGoogle Scholar | 26270260PubMed |
[16] M. Pandeeswar, H. Khare, S. Ramakumar, T. Govindaraju, RSC Adv. 2014, 4, 20154.
| Crossref | GoogleScholarGoogle Scholar |
[17] D. Aigner, R. I. Dmitriev, S. M. Borisov, D. B. Papkovsky, I. Klimant, J. Mater. Chem. B Mater. Biol. Med. 2014, 2, 6792.
| Crossref | GoogleScholarGoogle Scholar | 32261875PubMed |
[18] D. Aigner, S. M. Borisov, P. Petritsch, I. Klimant, Chem. Commun. 2013, 49, 2139.
| Crossref | GoogleScholarGoogle Scholar |
[19] M. Montalti, G. Battistelli, A. Cantelli, D. Genovese, Chem. Commun. 2014, 50, 5326.
| Crossref | GoogleScholarGoogle Scholar |
[20] H. M. Liu, Y. L. Wang, C. H. Liu, H. X. Li, B. X. Gao, L. C. Zhang, et al. J. Mater. Chem. 2012, 22, 6176.
| Crossref | GoogleScholarGoogle Scholar |
[21] F. Wurthner, M. Stolte, Chem. Commun. 2011, 47, 5109.
| Crossref | GoogleScholarGoogle Scholar |
[22] E. Kozma, W. Mroz, F. Galeotti, Dyes Pigments 2015, 114, 138.
| Crossref | GoogleScholarGoogle Scholar |
[23] Y. J. Wang, Z. Li, J. Tong, X. Y. Shen, A. Qin, J. Z. Sun, et al. J. Mater. Chem. C Mater. Opt. Electron. Devices 2015, 3, 3559.
| Crossref | GoogleScholarGoogle Scholar |
[24] G. Echue, G. C. Lloyd‐Jones, C. F. Faul, Chem. – Eur. J. 2015, 21, 5118.
| Crossref | GoogleScholarGoogle Scholar | 25689392PubMed |
[25] S. Hong, Y. S. Na, S. Choi, I. T. Song, W. Y. Kim, H. Lee, Adv. Funct. Mater. 2012, 22, 4711.
| Crossref | GoogleScholarGoogle Scholar |
[26] J. Riesz, J. Gilmore, P. Meredith, Biophys. J. 2006, 90, 4137.
| Crossref | GoogleScholarGoogle Scholar | 16565050PubMed |
[27] Y. Liu, K. Ai, L. Lu, Chem. Rev. 2014, 114, 5057.
| Crossref | GoogleScholarGoogle Scholar | 24517847PubMed |
[28] Q. Wei, F. L. Zhang, J. Li, B. J. Li, C. S. Zhao, Polym. Chem. 2010, 1, 1430.
| Crossref | GoogleScholarGoogle Scholar |
[29] X. Y. Zhong, K. Yang, Z. L. Dong, X. Yi, Y. Wang, C. C. Ge, et al. Adv. Funct. Mater. 2015, 25, 7327.
| Crossref | GoogleScholarGoogle Scholar |
[30] W. Qiang, H. Hu, L. Sun, H. Li, D. Xu, Anal. Chem. 2015, 87, 12190.
| Crossref | GoogleScholarGoogle Scholar | 26556471PubMed |
[31] A. Nitzan, J. Jortner, J. Kommandeur, E. Drent, Chem. Phys. Lett. 1971, 9, 273.
| Crossref | GoogleScholarGoogle Scholar |
[32] J. Chang, H. Li, T. Hou, F. Li, Biosens. Bioelectron. 2016, 86, 971.
| Crossref | GoogleScholarGoogle Scholar | 27498323PubMed |
[33] Z. S. Qian, L. J. Chai, C. Tang, Y. Y. Huang, J. R. Chen, H. Feng, Sens. Actuators B Chem. 2016, 222, 879.
| Crossref | GoogleScholarGoogle Scholar |
[34] W. Li, W. Li, Y. Hu, Y. Xia, Q. Shen, Z. Nie, et al. Biosens. Bioelectron. 2013, 47, 345.
| Crossref | GoogleScholarGoogle Scholar | 23603132PubMed |
[35] Y. Li, H. Bai, C. Li, G. Shi, ACS Appl. Mater. Interfaces 2011, 3, 1306.
| Crossref | GoogleScholarGoogle Scholar | 21438627PubMed |
[36] P. J. Ni, Y. J. Sun, H. C. Dai, W. D. Lu, S. Jiang, Y. L. Wang, et al. Sens. Actuators B Chem. 2017, 240, 1314.
| Crossref | GoogleScholarGoogle Scholar |
[37] W. X. Xue, D. Q. Zhang, G. X. Zhang, D. B. Zhu, Chin. Sci. Bull. 2011, 56, 1877.
| Crossref | GoogleScholarGoogle Scholar |
[38] W. Tuntiwechapikul, T. Taka, M. Bethencourt, L. Makonkawkeyoon, T. Randall Lee, Bioorg. Med. Chem. Lett. 2006, 16, 4120.
| Crossref | GoogleScholarGoogle Scholar | 16713263PubMed |