Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Reversible Fluorescence Switching of Donor–Acceptor Type Bipyridines by Simple Protonation–Deprotonation Equilibria

Shaik Mubeena A , Meghana N A , Gayatri Annapareddy A , Yi-Sheng Chen B , Monima Sarma https://orcid.org/0000-0002-4358-6772 A C and Ken-Tsung Wong https://orcid.org/0000-0002-1680-6186 B C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, KL Deemed to be University (KLEF), Greenfields, Vaddeswaram, Andhra Pradesh 522502, India.

B Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.

C Corresponding authors. Email: monima.22@gmail.com; kenwong@ntu.edu.tw

Australian Journal of Chemistry 74(8) 601-606 https://doi.org/10.1071/CH21054
Submitted: 26 February 2021  Accepted: 21 May 2021   Published: 16 June 2021

Abstract

This article describes the switchable fluorescence of a series of donor–acceptor type 2,2′-bipyridines. The original bipyridine molecules have four protonation sites – two on the amino donor sites and two on the pyridine acceptor cores. These nitrogen-containing sites are selectively protonated by suitable acids and the protonation influences the electronic conjugation and structure of the chromophores. Consequently, the emission characteristics of the molecules are affected, and this behaviour is reversible, i.e. the neutral original species are regenerated by the addition of an equivalent amount of base. The switchable behaviour of these compounds is accompanied by a visible colour change of the relevant solutions.

Keywords: bipyridine, chromophore, fluorescence, switch, reversibility, donor–acceptor, protonation, equilibrium, density functional theory.


References

[1]  A. P. de Silva, D. B. Fox, T. S. Moody, S. M. Weir, Trends Biotechnol. 2001, 19, 29.
         | Crossref | GoogleScholarGoogle Scholar | 11146100PubMed |

[2]  T. Fukaminato, J. Photochem. Photobiol. Chem. 2011, 12, 177.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  T. Fukaminato, S. Ishida, R. Métivier, NPG Asia Mater. 2018, 10, 859.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  B. Daly, J. Linga, A. P. De Silva, Chem. Soc. Rev. 2015, 44, 4203.
         | Crossref | GoogleScholarGoogle Scholar | 25695939PubMed |

[5]  D. Kim, S. Y. Park, Adv. Opt. Mater. 2018, 6, 1800678.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  Y. Wang, X. Tan, Y.-M. Zhang, S. Zhu, I. Zhang, B. Yu, K. Wang, B. Yang, M. Li, B. Zou, S. X.-A. Zhang, J. Am. Chem. Soc. 2015, 137, 931.
         | Crossref | GoogleScholarGoogle Scholar | 25533888PubMed |

[7]  J. Zhang, Q. Zou, H. Tian, Adv. Mater. 2013, 25, 378.
         | Crossref | GoogleScholarGoogle Scholar | 22911949PubMed |

[8]  Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Y. Ma, Y. Zhang, S. Liu, J. Xu, Chem. Soc. Rev. 2012, 41, 3878.
         | Crossref | GoogleScholarGoogle Scholar | 22447121PubMed |

[9]  D. S. Reddy, N. Seelam, S. M. Reddy, Asian J. Chem. 2017, 29, 631.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  Q. Zhang, J. Xiao, Z. Yin, H. M. Duong, F. Qiao, F. Boey, X. Hu, H. Zhang, F. Wudl, Chem. Asian J. 2011, 6, 856.
         | Crossref | GoogleScholarGoogle Scholar | 21344661PubMed |

[11]  G. Li, Y. Wu, J. Gao, J. Li, Y. Zhao, Q. Zhang, Chem. Asian J. 2013, 8, 1574.
         | Crossref | GoogleScholarGoogle Scholar | 23606661PubMed |

[12]  P.-Y. Gu, Z. Wang, Q. Zhang, J. Mater. Chem. B Mater. Biol. Med. 2016, 4, 7060.
         | Crossref | GoogleScholarGoogle Scholar | 32263642PubMed |

[13]  V. Kandula, R. Gudipati, A. Chatterjee, M. Kaliyaperumala, S. Yennam, M. A. Behera, J. Chem. Sci. 2017, 129, 1233.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  A. Kumar, B. Sathish Kumar, E. Sreenivas, T. Subbaiah, Russ. J. Gen. Chem. 2018, 88, 587.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  S. Bodige, P. Ravula, K. C. Gulipalli, S. Endoori, J. N. N. S. Chandra, P. K. R. Cherukumalli, G. R. Vanaja, N. Seelam, Anticancer. Agents Med. Chem. 2018, 18, 891.
         | Crossref | GoogleScholarGoogle Scholar | 29424321PubMed |

[16]  P. Ravula, H. B. Vamaraju, M. Paturi, S. Bodige, K. C. Gulipalli, J. N. Narendra Sharath Chandra, J. Heterocycl. Chem. 2018, 55, 1313.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  I. Vani, K. R. S. Prasad, Russ. J. Gen. Chem. 2019, 89, 2108.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  C. P. Koteswara Rao, T. B. Rao, G. K. Charan, B. Srinu, S. R. Maturi, Russ. J. Gen. Chem. 2019, 89, 1023.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  L. Huang, Y. Qiu, C. Wu, Z. Ma, Z. Shen, X. Jia, J. Mater. Chem. C Mater. Opt. Electron. Devices 2018, 6, 10250.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  T. Chatterjee, M. Sarma, S. Ghanta, S. K. Das, Tetrahedron Lett. 2011, 52, 5460.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  M. Sarma, T. Chatterjee, S. Ghanta, S. K. Das, J. Org. Chem. 2012, 77, 432.
         | Crossref | GoogleScholarGoogle Scholar | 22059490PubMed |

[22]  T. Chatterjee, M. Sarma, S. K. Das, Tetrahedron Lett. 2010, 51, 6906.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  T. Chatterjee, M. Sarma, S. K. Das, Tetrahedron Lett. 2010, 51, 1985.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  R. Bodapati, M. Sarma, A. Kanakati, S. K. Das, J. Org. Chem. 2015, 80, 12482.
         | Crossref | GoogleScholarGoogle Scholar | 26560997PubMed |

[25]  O. Maury, J.-P. Guégan, T. Renouard, A. Hilton, P. Dupau, N. Sandon, L. Toupet, H. Le Bozec, New J. Chem. 2001, 25, 1553.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  L. Viau, O. Maury, H. Le Bozec, Tetrahedron Lett. 2004, 45, 125.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  V. Aubert, E. Ishow, F. Ibersiene, A. Boucekkine, J. A. G. Williams, L. Toupet, R. Me’tivier, K. Nakatani, V. Guerchais, H. Le Bozec, New J. Chem. 2009, 33, 1320.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  J. C. Araya, J. Gajardo, S. A. Moya, P. Aguirre, L. Toupet, J. A. G. Williams, M. Escadeillas, H. Le Bozec, V. Guerchais, New J. Chem. 2010, 34, 21.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  K. Willinger, K. Fischer, R. Kisselev, M. Thelakkat, J. Mater. Chem. 2009, 19, 5364.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  A. A. Abdel-Shafi, P. D. Beer, R. J. Mortimer, F. Wilkinson, J. Phys. Chem. A 2000, 104, 192.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  P. D. Beer, O. Kocian, R. J. Mortimer, C. Ridgway, J. Chem. Soc., Dalton Trans. 1993, 2629.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  J. Li, C. Hou, C. Huang, S. Xu, X. Peng, Q. Qi, W.-Y. Lai, W. Huang, Research 2020, 3839160.
         | Crossref | GoogleScholarGoogle Scholar | 33623913PubMed |

[33]  J. Li, C. Yang, X. Peng, Y. Chen, Q. Qi, X. Luo, W.-Y. Lai, W. Huang, J. Mater. Chem. C Mater. Opt. Electron. Devices 2018, 6, 19.
         | Crossref | GoogleScholarGoogle Scholar |