Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Aptamer-Facilitated Design of Gold Nanoparticle-Based Logic Gates for Cyromazine and Melamine Detection in Milk

Haibo Xing A D , Xuelian Fei A D , Bowen Zheng A , Xiyin Zheng B , Xu Dang A , Hongbo Zhang A , Fuxiang Tian A , Xiang Mei C E and Xiaojun Hu https://orcid.org/0000-0001-8906-1165 A E
+ Author Affiliations
- Author Affiliations

A School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Fengxian District, Shanghai 201418, China.

B Putuo District Center for Disease Control and Prevention, Putuo District, Shanghai 200333, China.

C Wenbo College, East China University of Political Science and Law, Songjiang District, Shanghai 201620, China.

D These authors contributed equally to this work.

E Corresponding authors. Email: kunjia329@126.com; 267358918@qq.com

Australian Journal of Chemistry 74(8) 574-583 https://doi.org/10.1071/CH21011
Submitted: 8 January 2021  Accepted: 2 May 2021   Published: 1 June 2021

Abstract

In this paper, we developed a simply designed detection method for logic gates by using aptamers, cetyltrimethyl ammonium bromide, together with melamine and cyromazine to control the aggregation and dispersion of gold nanoparticles (AuNPs). First, either melamine or cyromazine can induce the aggregation of AuNPs, supporting an OR gate to detect whether they were present or not. Second, based on the fact that aptamer T31 can specifically bind with melamine, preventing the aggregation of AuNPs, an improved INHIBIT gate was also fabricated to find whether there was melamine. It has a detection limit of 0.12 ppm by the naked eye for the detection of melamine, and the limit of detection (LOD) by spectrophotometer is 2.2 ppb. Third, with the adsorption of aptamer Tcy1 on AuNPs and the strong coordination of Tcy1 with cyromazine, the addition of cyromazine and CTAB immediately resulted in the aggregation of AuNPs, giving rise to an AND gate. This gate has a detection limit of 0.17 ppm by the naked eye and the limit of detection (LOD) is 9.0 ppb by spectrophotometer. The system provided a good platform for the development of functional logic systems.

Keywords: aptamer, biosensor, cyromazine, detection, logic gate, melamine, milk.


References

[1]  K. Ai, Y. Liu, L. Lu, J. Am. Chem. Soc. 2009, 131, 9496.
         | Crossref | GoogleScholarGoogle Scholar | 19537721PubMed |

[2]  J. Choi, Y. T. Kim, J. H. Lee, Analyst 2010, 135, 2445.
         | Crossref | GoogleScholarGoogle Scholar | 20683522PubMed |

[3]  J. X. Liu, Y. B. Zhong, J. Liu, H. C. Zhang, J. Z. Xi, J. P. Wang, Food Control 2010, 21, 1482.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  A. M. Cook, R. Huetter, J. Agric. Food Chem. 1981, 29, 1135.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  L. O. Lim, S. J. Scherer, K. D. Shuler, J. P. Toth, J. Agric. Food Chem. 1990, 38, 860.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  X. Zhu, S. Wang, Q. Liu, Q. Xu, S. Xu, H. Chen, J. Agric. Food Chem. 2009, 57, 11075.
         | Crossref | GoogleScholarGoogle Scholar | 19899757PubMed |

[7]  Q. Li, H. B. Wang, X. F. Yue, J. X. Du, Talanta 2020, 211, 120705.
         | Crossref | GoogleScholarGoogle Scholar | 32070571PubMed |

[8]  J. P. Hayes, Introduction To Digital Logic Design 1993 (Addison-Wesley Publishing Company: Reading, MA).

[9]  S. Bi, Y. Yan, S. Y. Hao, S. S. Zhang, Angew. Chem. Int. Ed. 2010, 49, 4438.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  K. Óskarsdóttir, G. V. Oddsson, J. Food Eng. 2019, 240, 153.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. T. Munir, D. I. Wilson, W. Yu, B. R. Young, J. Food Eng. 2018, 221, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  S. Singh, K. K. Gaikwad, M. Lee, Y. S. Lee, J. Food Eng. 2018, 216, 11.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  W. Z. Lin, Y. H. Chen, C. K. Liang, C. C. Liu, S. Y. Hou, Food Chem. 2019, 271, 440.
         | Crossref | GoogleScholarGoogle Scholar | 30236699PubMed |

[14]  J. W. Liu, Z. H. Cao, Y. Lu, Chem. Soc. Rev. 2009, 109, 1948.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  M. Jia, J. Y. Sha, Z. H. Li, W. J. Wang, H. Y. Zhang, Food Chem. 2020, 317, 126459.
         | Crossref | GoogleScholarGoogle Scholar | 32113141PubMed |

[16]  W. Su, V. Bonnard, G. A. Burley, Eur. J. Med. Chem. 2011, 17, 7982.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  H. Fan, G. Yan, Z. Zhao, X. Hu, W. Zhang, X. B. Zhang, W. H. Tan, Angew. Chem. 2016, 55, 5477.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  T. Li, S. Dong, E. Wang, J. Am. Chem. Soc. 2010, 132, 13156.
         | Crossref | GoogleScholarGoogle Scholar | 20822179PubMed |

[19]  H. B. Xing, S. S. Zhan, L. He, P. Zhou, RSC Adv. 2013, 3, 17424.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  H. B. Xing, W. C. Gu, D. Xu, X. J. Hu, RSC Adv. 2018, 8, 2418.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  J. J. Du, S. Y. Yin, L. Jiang, B. Ma, X. D. Chen, Chem. Commun. 2013, 49, 4196.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  Z. Z. Huang, H. N. Wang, W. S. Yang, Nanoscale 2014, 6, 8300.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  L. L. Zhang, T. W. Yuan, X. L. Wen, Y. Li, C. Cao, Q. H. Xiong, RSC Adv. 2015, 5, 59106.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  J. C. Liu, W. H. Bai, C. Zhu, M. M. Yan, A. L. Chen, Analyst 2015, 140, 2064.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  H. Chi, B. Liu, G. Guan, Z. Zhang, M. Y. Han, Analyst 2010, 135, 1070.
         | Crossref | GoogleScholarGoogle Scholar | 20419258PubMed |

[26]  K. Velmurugan, R. Vickram, C. V. Jipsa, R. Karthick, G. Prabakaran, S. Suresh, J. Prabhu, G. Velraj, L. Tang, R. Nandhakumar, Food Chem. 2021, 348, 129098.
         | Crossref | GoogleScholarGoogle Scholar | 33515942PubMed |

[27]  J. P. Toth, P. C. Bardalaye, J. Chromatogr. A 1987, 408, 335.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  X. Liang, H. Wei, Z. Cui, J. Deng, Z. Zhang, X. You, X. E. Zhang, Analyst 2011, 136, 179.
         | Crossref | GoogleScholarGoogle Scholar | 20877886PubMed |

[29]  C. P. Shaw, D. G. Fernig, R. Lévy, J. Mater. Chem. 2011, 21, 12181.
         | Crossref | GoogleScholarGoogle Scholar |