Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Evaluation of a Continuous-Flow Photo-Bromination Using N-Bromosuccinimide for Use in Chemical Manufacture

Matthew Waterford A B , Simon Saubern https://orcid.org/0000-0002-1989-4951 A and Christian H. Hornung https://orcid.org/0000-0002-3678-6565 A
+ Author Affiliations
- Author Affiliations

A CSIRO Manufacturing, Bag 10, Clayton South, Vic. 3169, Australia.

B Corresponding author. Email: matthew.waterford@csiro.au

Australian Journal of Chemistry 74(8) 569-573 https://doi.org/10.1071/CH20372
Submitted: 21 December 2020  Accepted: 22 March 2021   Published: 9 April 2021

Journal Compilation © CSIRO 2021 Open Access CC BY

Abstract

A continuous-flow photo-bromination reaction on benzyl and phenyl groups was conducted using N-bromosuccinimide as the bromine source inside a preparatory-scale glass plate reactor. This flow reactor system was capable of independently controlling light intensity, wavelength, and reaction temperature, hence exerting an exceptional level of control over the reaction. A short optimisation study for the synthesis of 2-bromomethyl-4-trifluoromethoxyphenylboronic acid pinacol ester resulted in best conditions of 20°C and 10 min residence time using an LED (light-emitting diode) array at 405 nm and acetonitrile as the solvent. The present study evaluates the potential for this easy-to-handle bromination system to be scaled up for chemical manufacture inside a continuous-flow glass plate reactor. The combination with an in-line continuous flow liquid–liquid extraction and separation system, using a membrane separator, demonstrates the potential for continuous flow reaction with purification in an integrated multi-stage operation with minimal manual handling in between.

Keywords: continuous flow chemistry, photochemistry, photo-bromination, microreactor, in-line separation, photoactivation.


References

[1]  D. F. Swinehart, J. Chem. Educ. 1962, 39, 333.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  J. P. Knowles, L. D. Elliott, K. I. Booker-Milburn, Beilstein J. Org. Chem. 2012, 8, 2025.
         | Crossref | GoogleScholarGoogle Scholar | 23209538PubMed |

[3]  N Miyaura, A Suzuki, Chem. Rev. 1995, 95, 2457.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  R. Cramer, D. R. Coulson, J. Org. Chem. 1975, 40, 2267.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  R. Hosseinzadeh, M. Tajbakhsh, M. Mohadjerani, Z. Lasemi, Synth. Commun. 2010, 40, 868.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  D. Cantillo, O. de Frutos, J. A. Rincon, C. Mateos, C. O. Kappe, J. Org. Chem. 2014, 79, 223.
         | Crossref | GoogleScholarGoogle Scholar | 24261546PubMed |

[7]  A. Wohl, Ber. Dtsch. Chem. Ges. B 1919, 52, 51.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  M. C. Carreno, J. L. Garcia Ruano, G. Sanz, M. A. Toledo, A. Urbano, J. Org. Chem. 1995, 60, 5328.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  H. E. Bonfield, J. D. Williams, W. X. Ooi, S. G. Leach, W. J. Kerr, L. J. Edwards, ChemPhotoChem 2018, 2, 938.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  S. Shimizu, Y. Imamura, T. Ueki, Org. Process Res. Dev. 2014, 18, 354.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  K. Rajesh, M. Somasundaram, R. Saiganesh, K. K. Balasubramanian, J. Org. Chem. 2007, 72, 5867.
         | Crossref | GoogleScholarGoogle Scholar | 17590047PubMed |

[12]  Corning, Advanced-FlowTM Reactors (AFR). Available at: https://www.corning.com/au/en/innovation/corning-emerging-innovations/advanced-flow-reactors.html (accessed 7 July 2020).

[13]  A. Adamo, P. L. Heider, N. Weeranoppanant, K. F. Jensen, Ind. Eng. Chem. Res. 2013, 52, 10802.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  Vapourtec, Large-Diameter Tubular Reactor for Rapid Mixing. Available at: https://www.vapourtec.com/products/flow-reactors/large-diameter-tubular-reactor-for-rapid-mixing-features/ (accessed 14 July 2020)

[15]  Zaiput Flow Technologies, Multistage Extraction. Available at: https://www.zaiput.com/product/multistage-extraction/ (accessed 27 July 2020)

[16]  J. Britton, T. F. Jamison, Nat. Protoc. 2017, 12, 2423.
         | Crossref | GoogleScholarGoogle Scholar | 29072707PubMed |

[17]  X. He, X. Wang, Y.-L. S. Tse, Z. Ke, Y.-Y. Yeung, Angew. Chem. Int. Ed. 2018, 57, 12869.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  D. C. Braddock, G. Cansell, S. A. Hermitage, Synlett 2004, 461.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  M. B. Smith, L. Guo, S Okeyo, J Stenzel, J Yanella, E LaChapelle, Org. Lett. 2002, 4, 2321.
         | Crossref | GoogleScholarGoogle Scholar | 12098237PubMed |

[20]  S. Adimurthy, G. Ramachandraiah, A. V. Bedekar, S. Ghosh, B. C. Ranu, P. K. Ghosh, Green Chem. 2006, 8, 916.
         | Crossref | GoogleScholarGoogle Scholar |