Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

NMR Chemical Shift and Methylation of 4-Nitroimidazole: Experiment and Theory*

Frederick Backler A , Marc Antoine Sani https://orcid.org/0000-0003-3284-2176 B , Frances Separovic https://orcid.org/0000-0002-6484-2763 B , Vladislav Vasilyev C and Feng Wang https://orcid.org/0000-0002-6584-0516 A D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Biotechnology and Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Vic. 3122, Australia.

B School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Vic. 3010, Australia.

C National Computational Infrastructure, Australian National University, Canberra, ACT 0200, Australia.

D Corresponding author. Email: fwang@swin.edu.au

Australian Journal of Chemistry 74(1) 48-55 https://doi.org/10.1071/CH20199
Submitted: 18 June 2020  Accepted: 3 August 2020   Published: 1 October 2020

Abstract

Nitroimidazoles and derivatives are a class of active pharmaceutical ingredients (APIs) first introduced sixty years ago. As anti-infection agents, the structure–activity relationships of nitroimidazole compounds have been particularly difficult to study due to their low reduction potentials and unique electronic structures. In this study, we combine dynamic nuclear polarization (DNP)-enhanced solid-state (100 K), solid-state (298 K), and 1H-13C heteronuclear single quantum coherence (HSQC) solution-state NMR techniques (303 K) with density functional theory (DFT) to study the 1H, 13C, and 15N chemical shifts of 4-nitroimidazole (4-NI) and 1-methyl-4-nitroimidazole (CH3-4NI). The 4-NI chemical shifts were observed at 119.4, 136.4, and 144.7 ppm for 13C, and at 181.5, 237.4, and 363.0 ppm for 15N. The measurements revealed that methylation (deprotonation) of the amino nitrogen N(1) of 4-NI had less effect (Δδ = −4.8 ppm) on the N(1) chemical shift but was compensated by shielding of the N(3)δ = 11.6 ppm) in CH3-4NI. The calculated chemical shifts using DFT for 4-NI and CH3-4NI agreed well with the experimental values (within 2 %) for the imidazole carbons. However, larger discrepancies (up to 13 %) were observed between the calculated and measured 15N NMR chemical shifts for the imidazole nitrogen atoms of both molecules, which indicate that effects such as imidazole ring resonant structures and molecular dynamics may also contribute to the nitrogen chemical environment.


References

[1]  B. C. Chen, W. Von Philipsborn, K. Nagarajan, Helv. Chim. Acta 1983, 66, 1537.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  P. Wardman, Br. J. Radiol. 2019, 92, 20170915.
         | 29303355PubMed |

[3]  H. W. Ueber, Exp. Pathol. Pharmakol. 1887, 22, 253.

[4]  R. Weinshilboum, Clin. Biochem. 1988, 21, 201.
         | Crossref | GoogleScholarGoogle Scholar | 3044645PubMed |

[5]  T. Mukherjee, H. Boshoff, Future Med. Chem. 2011, 3, 1427.
         | Crossref | GoogleScholarGoogle Scholar | 21879846PubMed |

[6]  P. Jiménez, J. Laynes, R. Claramunt, D. Sanz, J. P. Fayet, M. C. Vertut, J. Catalán, J. L. G. Paz, G. Pfister-Guillouzo, C. Guimon, R. Flammang, A. Maquestiau, J. Elguero, New J. Chem. 1989, 13, 151.

[7]  H. L. De Bondt, E. Ragia, N. M. Blaton, O. M. Peeters, C. J. De Ranter, Acta Crystallogr. Sect. C 1993, 49, 694.

[8]  A. I. Vokin, L. V. Sherstyannikova, I. G. Krivoruchka, T. N. Aksamentova, O. V. Krylova, V. K. Turchaninov, Russ. J. Gen. Chem. 2003, 73, 973.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  T. Ueda, S. Nagatomo, H. Masui, N. Nakamura, S. Hayashi, Z. Naturforsch. A 1999, 437.

[10]  T. M. T. Carvalho, L. M. P. F. Amaral, V. M. F. Morais, M. D. M. C. Ribeiro da Silva, J. Chem. Thermodyn. 2017, 105, 267.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  I. Ségalas, J. Poitras, A. L. Beauchamp, Acta Crystallogr. Sect. C 1992, 48, 295.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  G. A. Worth, P. M. King, W. G. Richards, Biochim. Biophys. Acta 1989, 993, 134.
         | Crossref | GoogleScholarGoogle Scholar | 2804121PubMed |

[13]  L. Feketeová, J. Postler, A. Zavras, P. Scheier, S. Denifl, R. A. J. O’Hair, Phys. Chem. Chem. Phys. 2015, 17, 12598.
         | Crossref | GoogleScholarGoogle Scholar | 25899156PubMed |

[14]  P. Bolognesi, A. R. Casavola, A. Cartoni, R. Richter, P. Markus, S. Borocci, J. Chiarinelli, S. Tošić, H. Sa’adeh, M. Masič, B. P. Marinković, K. C. Prince, L. Avaldi, J. Chem. Phys. 2016, 145, 191102.
         | Crossref | GoogleScholarGoogle Scholar | 27875881PubMed |

[15]  J. Chiarinelli, A. R. Casavola, M. C. Castrovilli, P. Bolognesi, A. Cartoni, F. Wang, R. Richter, D. Catone, S. Tosic, B. P. Marinkovic, L. Avaldi, Front Chem. 2019, 7, 329.
         | Crossref | GoogleScholarGoogle Scholar | 31157205PubMed |

[16]  L. Zhao, A. C. Pinon, L. Emsley, A. J. Rossini, Magn. Reson. Chem. 2018, 56, 583.
         | Crossref | GoogleScholarGoogle Scholar | 29193278PubMed |

[17]  P. C. Driscoll, in Encyclopedia of Biophysics (Ed. G. C. K. Roberts) 2013, pp. 2488–2495 (Springer: Berlin).

[18]  A. Hofstetter, M. Balodis, F. M. Paruzzo, C. M. Widdifield, G. Stevanato, A. C. Pinon, P. J. Bygrave, G. M. Day, L. Emsley, J. Am. Chem. Soc. 2019, 141, 16624.
         | Crossref | GoogleScholarGoogle Scholar | 31117663PubMed |

[19]  F. Rossi, N. T. Duong, M. K. Pandey, M. R. Chierotti, R. Gobetto, Y. Nishiyama, Magn. Reson. Chem. 2019, 57, 294.
         | Crossref | GoogleScholarGoogle Scholar | 30684385PubMed |

[20]  M. G. Jain, K. R. Mote, P. K. Madhu, Crystals 2019, 9, 231.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  S. T. Holmes, R. W. Schurko, J. Phys. Chem. C 2018, 122, 1809.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  K. Kalakewich, R. Iuliucci, K. T. Mueller, H. Eloranta, J. K. Harper, J. Chem. Phys. 2015, 143, 194702.
         | Crossref | GoogleScholarGoogle Scholar | 26590548PubMed |

[23]  S. T. Holmes, O. G. Engl, M. N. Srnec, J. D. Madura, R. Quiñones, J. K. Harper, R. W. Schurko, R. J. Iuliucci, J. Phys. Chem. A 2020, 124, 3109.
         | Crossref | GoogleScholarGoogle Scholar | 32233483PubMed |

[24]  J. Powell, K. Kalakewich, F. J. Uribe-Romo, J. K. Harper, Phys. Chem. Chem. Phys. 2016, 18, 12541.
         | Crossref | GoogleScholarGoogle Scholar | 27087051PubMed |

[25]  E. Kolehmainen, B. Ośmiałowski, Int. Rev. Phys. Chem. 2012, 31, 567.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  K. A. Mercier, M. D. Shortridge, R. Powers, Comb. Chem. High Throughput Screen. 2009, 12, 285.
         | Crossref | GoogleScholarGoogle Scholar | 19275534PubMed |

[27]  M.-A. Sani, S. Zhu, V. Hofferek, F. Separovic, FASEB J. 2019, 33, 11021.
         | 31284743PubMed |

[28]  C. Sauvee, M. Rosay, G. Casano, F. Aussenac, R. Weber, O. Ouari, P. Tordo, Angew. Chem. Int. Ed. Engl. 2013, 52, 10858.
         | Crossref | GoogleScholarGoogle Scholar | 23956072PubMed |

[29]  L. Feketeová, O. Plekan, M. Goonewardane, M. Ahmed, A. Albright, J. White, R. A. J. O’Hair, M. R. Horsman, F. Wang, K. C. Prince, J. Phys. Chem. A 2015, 119, 9986.
         | Crossref | GoogleScholarGoogle Scholar | 26344652PubMed |

[30]  Y. Takano, K. N. Houk, J. Chem. Theory Comput. 2005, 1, 70.
         | Crossref | GoogleScholarGoogle Scholar | 26641117PubMed |

[31]  A. Ganesan, F. Wang, J. Chem. Phys. 2009, 131, 044321.
         | Crossref | GoogleScholarGoogle Scholar | 19655881PubMed |

[32]  F. Wang, S. Chatterjee, J. Phys. Chem. B 2017, 121, 4745.
         | Crossref | GoogleScholarGoogle Scholar | 28402662PubMed |

[33]  S. Islam, A. Ganesan, R. Auchettl, O. Plekan, R. G. Acres, F. Wang, K. C. Prince, J. Chem. Phys. 2018, 149, 134312.
         | Crossref | GoogleScholarGoogle Scholar | 30292192PubMed |

[34]  H. Sa’adeh, F. Backler, F. Wang, S. Piccirillo, A. Ciavardini, R. Richter, M. Coreno, K. C. Prince, J. Phys. Chem. A 2020, 124, 4025.
         | Crossref | GoogleScholarGoogle Scholar | 32336097PubMed |

[35]  P. Lahiri, K. B. Wiberg, P. H. Vaccaro, M. T. Caricato, D. Crawford, Angew. Chem. Int. Ed. 2014, 53, 1386.

[36]  D. C. Stephens, S. K. Leggett, M. C. Cushing, M. S. Marley, D. Saumon, T. R. Geballe, D. A. Golimowski, X. Fan, K. S. Noll, Astrophys. J. 2009, 702, 154.

[37]  F. London, J. Phys. Radium 1937, 8, 397.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  R. McWeeny, Phys. Rev. 1962, 126, 1028.

[39]  R. Ditchfield, Mol. Phys. 1974, 27, 789.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  K. Wolinski, J. F. Hilton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 1996, 104, 5497.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 16, Revision C.01 2016 (Gaussian, Inc.: Wallingford, CT).

[43]  A. McKillop, D. E. Wright, M. L. Podmore, R. K. Chambers, Tetrahedron 1983, 39, 3797.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  E. Lippmaa, M. Mägi, S. S. Novikov, L. I. Khmelnitski, A. S. Prihodko, O. V. Lebedev, L. V. Epishina, Magn. Reson. Chem. 1972, 4, 153.

[45]  H. A. Shahid, S. Jahangir, S. Yousuf, M. Hanif, S. K. Sherwani, Arab. J. Chem. 2016, 9, 668.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  J. Wang, P. Lian, L. Chen, Z. Kristallogr. – New Cryst. Struct. 2017, 232, 699.

[47]  T. C. Ramalho, M. Buhl, Magn. Reson. Chem. 2005, 43, 139.
         | Crossref | GoogleScholarGoogle Scholar | 15558660PubMed |

[48]  W. F. Reynolds, I. R. Peat, M. H. Freedman, J. R. Lyerla, J. Am. Chem. Soc. 1973, 95, 328.
         | Crossref | GoogleScholarGoogle Scholar | 4687673PubMed |

[49]  A. Cartoni, A. R. Casavola, P. Bolognesi, M. C. Castrovilli, D. Catone, J. Chiarinelli, R. Richter, L. Avaldi, J. Phys. Chem. A 2018, 122, 4031.
         | Crossref | GoogleScholarGoogle Scholar | 29652141PubMed |

[50]  S. Hashem, L. Cupellini, F. Lipparini, B. Mennucci, Mol. Phys. 2020, e1771449.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  D. O. Samultsev, V. A. Semenov, L. B. Krivdin, Magn. Reson. Chem. 2014, 52, 222.
         | Crossref | GoogleScholarGoogle Scholar | 24573615PubMed |

[52]  T. L. Suyama, W. H. Gerwick, K. L. McPhail, Bioorg. Med. Chem. 2011, 19, 6675.
         | Crossref | GoogleScholarGoogle Scholar | 21715178PubMed |