Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Initiation of RAFT Polymerization: Electrochemically Initiated RAFT Polymerization in Emulsion (Emulsion eRAFT), and Direct PhotoRAFT Polymerization of Liquid Crystalline Monomers*

Caroline Bray https://orcid.org/0000-0003-1845-9381 A B , Guoxin Li A , Almar Postma https://orcid.org/0000-0001-7343-7236 A , Lisa T. Strover https://orcid.org/0000-0002-0741-3444 A B , Jade Wang A and Graeme Moad https://orcid.org/0000-0002-4375-5580 A B
+ Author Affiliations
- Author Affiliations

A CSIRO Manufacturing, Clayton, Vic. 3168, Australia.

B Corresponding authors. Email: caroline.bray@csiro.au; lisa.strover@csiro.au; graeme.moad@csiro.au

Australian Journal of Chemistry 74(1) 56-64 https://doi.org/10.1071/CH20260
Submitted: 28 August 2020  Accepted: 7 September 2020   Published: 2 October 2020

Journal Compilation © CSIRO 2021 Open Access CC BY-NC-ND

Abstract

We report on two important advances in radical polymerization with reversible addition–fragmentation chain transfer (RAFT polymerization). (1) Electrochemically initiated emulsion RAFT (eRAFT) polymerization provides rapid polymerization of styrene at ambient temperature. The electrolytes and mediators required for eRAFT are located in the aqueous continuous phase separate from the low-molar-mass-dispersity macroRAFT agent mediator and product in the dispersed phase. Use of a poly(N,N-dimethylacrylamide)-block-poly(butyl acrylate) amphiphilic macroRAFT agent composition means that no added surfactant is required for colloidal stability. (2) Direct photoinitiated (visible light) RAFT polymerization provides an effective route to high-purity, low-molar-mass-dispersity, side chain liquid-crystalline polymers (specifically, poly(4-biphenyl acrylate)) at high monomer conversion. Photoinitiation gives a product free from low-molar-mass initiator-derived by-products and with minimal termination. The process is compared with thermal dialkyldiazene initiation in various solvents. Numerical simulation was found to be an important tool in discriminating between the processes and in selecting optimal polymerization conditions.


References

[1]  T.P. Le, G. Moad, E. Rizzardo, S.H. Thang, Polymerization with living characteristics, DuPont/CSIRO, 1998, Patent WO9801478A1.

[2]  P. Corpart, D. Charmot, T. Biadatti, S. Zard, D. Michelet, Block polymer synthesis by controlled radical polymerization, Rhodia Chimie, 1998, Patent WO9858974.

[3]  J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 1998, 31, 5559.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  M. Destarac, Polym. Chem. 2018, 9, 4947.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  T. Otsu, M. Yoshida, Makromol. Chem., Rapid. Commun. 1982, 3, 127.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  T. Otsu, M. Yoshida, A. Kuriyama, Polym. Bull. 1982, 7, 45.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  T. Otsu, J. Polym. Sci. A Polym. Chem. 2000, 38, 2121.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  J. F. Quinn, L. Barner, C. Barner-Kowollik, E. Rizzardo, T. P. Davis, Macromolecules 2002, 35, 7620.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  C. P. Easterling, Y. Xia, J. Zhao, G. E. Fanucci, B. S. Sumerlin, ACS Macro Lett. 2019, 8, 1461.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  J. Yeow, O. R. Sugita, C. Boyer, ACS Macro Lett. 2016, 5, 558.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  T. G. McKenzie, Q. Fu, M. Uchiyama, K. Satoh, J. Xu, C. Boyer, M. Kamigaito, G. G. Qiao, Adv. Sci. 2016, 3, 1500394.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  S. Shanmugam, J. Xu, C. Boyer, Macromol. Rapid Commun. 2017, 38, 1700143.
         | Crossref | GoogleScholarGoogle Scholar | 28556363PubMed |

[13]  J. Xu, S. Shanmugam, N. A. Corrigan, C. Boyer, in Controlled Radical Polymerization: Mechanisms (Eds K. Matyjaszewski, B. S. Sumerlin, N. V. Tsarevsky, J. Chiefari) 2015, Vol. 1187, pp. 247–267 (American Chemical Society: Washington, DC). [ACS Symp. Ser. 2015, 1187, 247. 10.1021/bk-2015-1187.ch013]

[14]  S. Li, G. Han, W. Zhang, Polym. Chem. 2020, 11, 1830.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  M. D. Nothling, Q. Fu, A. Reyhani, S. Allison-Logan, K. Jung, J. Zhu, M. Kamigaito, C. Boyer, G. G. Qiao, Adv. Sci. 2020, 2001656.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  A. Aerts, R. W. Lewis, Y. Zhou, N. Malic, G. Moad, A. Postma, Macromol. Rapid Commun. 2018, 39, 1800240.
         | Crossref | GoogleScholarGoogle Scholar | 29900617PubMed |

[17]  Y. Zhou, Z. Zhang, C. Reese, D. L. Patton, J. Xu, C. Boyer, A. Postma, G. Moad, Macromol. Rapid Commun. 2020, 41, 1900478.
         | Crossref | GoogleScholarGoogle Scholar | 32297374PubMed |

[18]  J. Xu, C. Fu, S. Shanmugam, C. J. Hawker, G. Moad, C. Boyer, Angew. Chem. Int. Ed. Engl. 2017, 56, 8376.
         | Crossref | GoogleScholarGoogle Scholar | 27925363PubMed |

[19]  Z. Huang, B. B. Noble, N. Corrigan, Y. Chu, K. Satoh, D. S. Thomas, C. J. Hawker, G. Moad, M. Kamigaito, M. L. Coote, C. Boyer, J. Xu, J. Am. Chem. Soc. 2018, 140, 13392.
         | Crossref | GoogleScholarGoogle Scholar | 30230329PubMed |

[20]  P. R. Judzewitsch, N. Corrigan, F. Trujillo, J. Xu, G. Moad, C. J. Hawker, E. H. H. Wong, C. Boyer, Macromolecules 2020, 53, 631.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  N. Zaquen, M. Rubens, N. Corrigan, J. Xu, P. B. Zetterlund, C. Boyer, T. Junkers, Prog. Polym. Sci. 2020, 107, 101256.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  Y. Wang, M. Fantin, S. Park, E. Gottlieb, L. Fu, K. Matyjaszewski, Macromolecules 2017, 50, 7872.
         | Crossref | GoogleScholarGoogle Scholar | 29977098PubMed |

[23]  Y. Wang, M. Fantin, K. Matyjaszewski, Macromol. Rapid Commun. 2018, 39, 1800221.
         | Crossref | GoogleScholarGoogle Scholar | 30318665PubMed |

[24]  F. Lorandi, M. Fantin, S. Shanmugam, Y. Wang, A. A. Isse, A. Gennaro, K. Matyjaszewski, Macromolecules 2019, 52, 1479.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  L. T. Strover, A. Cantalice, J. Y. L. Lam, A. Postma, O. E. Hutt, M. D. Horne, G. Moad, ACS Macro Lett. 2019, 8, 1316.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  W. Sang, M. Xu, Q. Yan, ACS Macro Lett. 2017, 6, 1337.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  J. Bünsow, M. Mänz, P. Vana, D. Johannsmann, Macromol. Chem. Phys. 2010, 211, 761.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  C. J. Ferguson, R. J. Hughes, B. T. T. Pham, B. S. Hawkett, R. G. Gilbert, A. K. Serelis, C. H. Such, Macromolecules 2002, 35, 9243.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  C. J. Ferguson, R. J. Hughes, D. Nguyen, B. T. T. Pham, R. G. Gilbert, A. K. Serelis, C. H. Such, B. S. Hawkett, Macromolecules 2005, 38, 2191.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  J. Zhou, H. Yao, J. Ma, Polym. Chem. 2018, 9, 2532.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  S. J. Stace, J. Vanderspikken, S. C. Howard, G. Li, B. W. Muir, C. M. Fellows, D. J. Keddie, G. Moad, Polym. Chem. 2019, 10, 5044.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  G. K. K. Clothier, T. R. Guimarães, M. Khan, G. Moad, S. Perrier, P. B. Zetterlund, ACS Macro Lett. 2019, 8, 989.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  R. A. E. Richardson, T. R. Guimarães, M. Khan, G. Moad, P. B. Zetterlund, S. Perrier, Macromolecules 2020, 53, 7672.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  J. Rieger, W. Zhang, F. o. Stoffelbach, B. Charleux, Macromolecules 2010, 43, 6302.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  G. Kojima, M. Hisasue, Makromol. Chem. 1981, 182, 1429.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  S. Lee, A. Rudin, J. Polym. Sci., Part A, Polym. Chem. 1992, 30, 2211.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  K. Y. van Berkel, G. T. Russell, R. G. Gilbert, Polymer 2006, 47, 4667.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  H. A. S. Schoonbrood, A. L. German, R. G. Gilbert, Macromolecules 1995, 28, 34.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  T. Ganicz, W. Stańczyk, Materials 2009, 2, 95.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  H. Khandelwal, A. P. H. J. Schenning, M. G. Debije, Adv. Energy Mater. 2017, 7, 1602209.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  C. S. Lee, T. A. Kumar, J. H. Kim, J. H. Lee, J. S. Gwag, G.-D. Lee, S. H. Lee, J. Mater. Chem. C 2018, 6, 4243.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  C.-S. Hsu, Prog. Polym. Sci. 1997, 22, 829.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  H. Finkelmann, H. Ringsdorf, J. H. Wendorff, Makromol. Chem. 1978, 179, 273.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  B. Peng, D. Johannsmann, J. Rühe, Macromolecules 1999, 32, 6759.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  G. O. R. Alberda van Ekenstein, H. J. H. Altena, Y. Y. Tan, Eur. Polym. J. 1989, 25, 111.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  D. Wu, B. Ni, Y. Liu, S. Chen, H. Zhang, J. Mater. Chem. A 2015, 3, 9645.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  X.-Z. Wang, H.-L. Zhang, D.-C. Shi, J.-F. Chen, X.-Y. Wang, Q.-F. Zhou, Eur. Polym. J. 2005, 41, 933.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  L. Angiolini, T. Benelli, L. Giorgini, F. Paris, E. Salatelli, M. P. Fontana, P. Camorani, Eur. Polym. J. 2008, 44, 3231.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  Y. Zhu, Y. Zhou, Z. Chen, R. Lin, X. Wang, Polymer 2012, 53, 3566.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  X. Zhang, S. Boisse, C. Bui, P.-A. Albouy, A. Brulet, M.-H. Li, J. Rieger, B. Charleux, Soft Matter 2012, 8, 1130.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  N. I. Boiko, M. A. Bugakov, E. V. Chernikova, A. A. Piryazev, Y. I. Odarchenko, D. A. Ivanov, V. P. Shibaev, Polym. Chem. 2015, 6, 6358.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  W. Wen, T. Huang, S. Guan, Y. Zhao, A. Chen, Macromolecules 2019, 52, 2956.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  A. Postma, T. P. Davis, G. Li, G. Moad, M. O’Shea, Macromolecules 2006, 39, 5307.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  Q. Yang, M. Guerre, V. Ladmiral, B. Ameduri, Polym. Chem. 2018, 9, 3388.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  G. Moad, Prog. Polym. Sci. 2019, 88, 130.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  T. G. Ribelli, K. F. Augustine, M. Fantin, P. Krys, R. Poli, K. Matyjaszewski, Macromolecules 2017, 50, 7920.
         | Crossref | GoogleScholarGoogle Scholar |