Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Barrierless Reactions of Three Benzonitrile Radical Cations with Ethylene

Oisin J. Shiels A , P. D. Kelly A , Stephen J. Blanksby B , Gabriel da Silva C and Adam J. Trevitt https://orcid.org/0000-0003-2525-3162 A D
+ Author Affiliations
- Author Affiliations

A Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.

B Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Qld 4001, Australia.

C Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic. 3010, Australia.

D Corresponding author. Email: adamt@uow.edu.au

Australian Journal of Chemistry 73(8) 705-713 https://doi.org/10.1071/CH19606
Submitted: 24 November 2019  Accepted: 14 January 2020   Published: 13 May 2020

Abstract

Reactions of three protonated benzonitrile radical cations with ethylene are investigated. Product branching ratios and reaction kinetics, measured using ion-trap mass spectrometry, are reported and mechanisms are developed with support from quantum chemical calculations. Reactions proceed via pre-reactive van der Waals complexes with no energy barrier (above the reactant energy) and form radical addition and addition–elimination product ions. Rate coefficients are 4-dehydrobenzonitrilium: 1.72 ± 0.01 × 10−11 cm3 molecule−1 s−1, 3-dehydrobenzonitrilium: 1.85 ± 0.01 × 10−11 cm3 molecule−1 s−1, and 2-dehydrobenzonitrilium: 5.96 ± 0.06 × 10−11 cm3 molecule−1 s−1 (with ±50 % absolute uncertainty). A ring-closure mechanism involving the protonated nitrile substituent is proposed for the 2-dehydrobenzonitrilium case and suggests favourable formation of the protonated indenimine cation.


References

[1]  B. P. Basile, B. S. Middleditch, J. Oró, Org. Geochem. 1984, 5, 211.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  K. A. Kvenvolden, J. G. Lawless, C. Ponnamperuma, Proc. Natl. Acad. Sci. USA 1971, 68, 486.
         | Crossref | GoogleScholarGoogle Scholar | 16591908PubMed |

[3]  J. Oró, J. Gilbert, H. Lichtenstein, S. Wikstrom, D. A. Flory, Nature 1971, 230, 105.
         | Crossref | GoogleScholarGoogle Scholar | 4927006PubMed |

[4]  M. H. Engel, B. Nagy, Nature 1982, 296, 837.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  M. H. Engel, S. A. Macko, Nature 1997, 389, 265.
         | Crossref | GoogleScholarGoogle Scholar | 9305838PubMed |

[6]  E. T. Peltzer, J. L. Bada, G. Schlesinger, S. L. Miller, Adv. Space Res. 1984, 4, 69.
         | Crossref | GoogleScholarGoogle Scholar | 11537797PubMed |

[7]  J. R. Cronin, S. Pizzarello, Science 1997, 275, 951.
         | Crossref | GoogleScholarGoogle Scholar | 9020072PubMed |

[8]  D. S. N. Parker, R. I. Kaiser, Chem. Soc. Rev. 2017, 46, 452.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  B. A. McGuire, A. M. Burkhardt, S. Kalenskii, C. N. Shingledecker, A. J. Remijan, E. Herbst, M. C. McCarthy, Science 2018, 359, 202.
         | Crossref | GoogleScholarGoogle Scholar | 29326270PubMed |

[10]  J. E. Chiar, A. G. Tielens, A. J. Adamson, A. Ricca, Astrophys. J. 2013, 770, 78.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  I. W. Smith, Angew. Chem. Int. Ed. 2006, 45, 2842.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  T. P. Snow, V. M. Bierbaum, Annu. Rev. Anal. Chem. 2008, 1, 229.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  P. D. Kelly, S. J. Bright, J. Phys. Chem. 2019, 123, 8881.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  C. C. Bright, M. B. Prendergast, P. D. Kelly, J. P. Bezzina, S. J. Blanksby, G. da Silva, A. J. Trevitt, Phys. Chem. Chem. Phys. 2017, 19, 31072.
         | Crossref | GoogleScholarGoogle Scholar | 29152628PubMed |

[15]  R. I. Kaiser, D. S. Parker, A. M. Mebel, Annu. Rev. Phys. Chem. 2015, 66, 43.
         | Crossref | GoogleScholarGoogle Scholar | 25422849PubMed |

[16]  D. S. Parker, R. I. Kaiser, Chem. Soc. Rev. 2017, 46, 452.
         | Crossref | GoogleScholarGoogle Scholar | 27910987PubMed |

[17]  A. J. Trevitt, F. Goulay, C. A. Taatjes, D. L. Osborn, S. R. Leone, J. Phys. Chem. A 2010, 114, 1749.
         | Crossref | GoogleScholarGoogle Scholar | 20043665PubMed |

[18]  I. Cherchneff, J. R. Barker, A. G. Tielens, Astrophys. J. 1992, 401, 269.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  T. Oka, Proc. Natl. Acad. Sci. USA 2006, 103, 12235.
         | Crossref | GoogleScholarGoogle Scholar | 16894171PubMed |

[20]  M. Larsson, W. D. Geppert, G. Nyman, Rep. Prog. Phys. 2012, 75, 066901.
         | Crossref | GoogleScholarGoogle Scholar | 22790651PubMed |

[21]  T. C. Hsu, J. Shu, Y. Chen, J. J. Lin, Y. T. Lee, X. Yang, J. Chem. Phys. 2001, 115, 9623.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  B. J. West, L. Lesniak, P. M. Mayer, J. Phys. Chem. A 2019, 123, 3569.
         | Crossref | GoogleScholarGoogle Scholar | 30939003PubMed |

[23]  A. L. Betz, Astrophys. J. 1981, 244, L103.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  B. B. Kirk, D. G. Harman, S. J. Blanksby, J. Phys. Chem. A 2010, 114, 1446.
         | Crossref | GoogleScholarGoogle Scholar | 20039627PubMed |

[25]  D. G. Harman, S. J. Blanksby, Org. Biomol. Chem. 2007, 5, 3495.
         | Crossref | GoogleScholarGoogle Scholar | 17943209PubMed |

[26]  P. W. Atkins, J. De Paula, J. Keeler, in Atkins’ Physical Chemistry (Eds J. Crowe, J. Fiorillo) 2018, Vol. 1, Ch. 22, pp. 811–818 (Oxford University Press: Oxford).

[27]  F. Zhang, X. Gu, Y. Guo, R. I. Kaiser, J. Org. Chem. 2007, 72, 7597.
         | Crossref | GoogleScholarGoogle Scholar | 17784772PubMed |

[28]  E. W. Fu, R. C. Dunbar, J. Am. Chem. Soc. 1978, 100, 2283.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  C. S. Hansen, S. J. Blanksby, A. J. Trevitt, Phys. Chem. Chem. Phys. 2015, 17, 25882.
         | Crossref | GoogleScholarGoogle Scholar | 26027703PubMed |

[30]  T. Su, W. J. Chesnavich, J. Chem. Phys. 1982, 76, 5183.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  G. da Silva, B. B. Kirk, C. Lloyd, A. J. Trevitt, S. J. Blanksby, J. Phys. Chem. Lett. 2012, 3, 805.
         | Crossref | GoogleScholarGoogle Scholar | 26286401PubMed |

[32]  E. G. Hohenstein, S. T. Chill, C. D. Sherrill, J. Chem. Theory Comput. 2008, 4, 1996.
         | Crossref | GoogleScholarGoogle Scholar | 26620472PubMed |

[33]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 2016 (Gaussian, Inc.: Wallingford, CT).

[34]  C. E. Check, T. O. Faust, J. M. Bailey, B. J. Wright, T. M. Gilbert, L. S. Sunderlin, J. Phys. Chem. 2001, 105, 8111.
         | Crossref | GoogleScholarGoogle Scholar |