Density-Driven Correlations in Ensemble Density Functional Theory: Insights from Simple Excitations in Atoms*
Tim Gould A C and Stefano Pittalis BA Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Qld 4111, Australia.
B CNR-Istituto Nanoscienze, Via Campi 213A, I-41125 Modena, Italy.
C Corresponding author. Email: t.gould@griffith.edu.au
Australian Journal of Chemistry 73(8) 714-723 https://doi.org/10.1071/CH19504
Submitted: 8 October 2019 Accepted: 19 December 2019 Published: 1 May 2020
Abstract
Ensemble density functional theory extends the usual Kohn-Sham machinery to quantum state ensembles involving ground- and excited states. Recent work by the authors [Phys. Rev. Lett. 119, 243001 (2017); 123, 016401 (2019)] has shown that both the Hartree-exchange and correlation energies can attain unusual features in ensembles. Density-driven (DD) correlations – which account for the fact that pure-state densities in Kohn-Sham ensembles do not necessarily reproduce those of interacting pure states – are one such feature. Here we study atoms (specifically S–P and S–S transitions) and show that the magnitude and behaviour of DD correlations can vary greatly with the variation of the orbital angular momentum of the involved states. Such estimations are obtained through an approximation for DD correlations built from relevant exact conditions, Kohn-Sham inversion, and plausible assumptions for weakly correlated systems.
References
[1] P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.| Crossref | GoogleScholarGoogle Scholar |
[2] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
| Crossref | GoogleScholarGoogle Scholar |
[3] S. Matsika, A. I. Krylov, Chem. Rev. 2018, 118, 6925.
| Crossref | GoogleScholarGoogle Scholar | 30086645PubMed |
[4] E. Runge, E. K. Gross, Phys. Rev. Lett. 1984, 52, 997.
| Crossref | GoogleScholarGoogle Scholar |
[5] N. T. Maitra, J. Chem. Phys. 2005, 122, 234104.
| Crossref | GoogleScholarGoogle Scholar | 16008427PubMed |
[6] P. Elliott, S. Goldson, C. Canahui, N. T. Maitra, Chem. Phys. 2011, 391, 110.
| Crossref | GoogleScholarGoogle Scholar |
[7] N. T. Maitra, J. Phys. Condens. Matter. 2017, 29, 423001.
| Crossref | GoogleScholarGoogle Scholar | 28766507PubMed |
[8] J. Baker, A. Scheiner, J. Andzelm, Chem. Phys. Lett. 1993, 216, 380.
| Crossref | GoogleScholarGoogle Scholar |
[9] J. M. Wittbrodt, H. B. Schlegel, J. Chem. Phys. 1996, 105, 6574.
| Crossref | GoogleScholarGoogle Scholar |
[10] A. K. Theophilou, J. Phys. C Solid State Phys. 1979, 12, 5419.
| Crossref | GoogleScholarGoogle Scholar |
[11] E. K. U. Gross, L. N. Oliveira, W. Kohn, Phys. Rev. A 1988, 37, 2805.
| Crossref | GoogleScholarGoogle Scholar |
[12] E. K. U. Gross, L. N. Oliveira, W. Kohn, Phys. Rev. A 1988, 37, 2809.
| Crossref | GoogleScholarGoogle Scholar |
[13] L. N. Oliveira, E. K. U. Gross, W. Kohn, Phys. Rev. A 1988, 37, 2821.
| Crossref | GoogleScholarGoogle Scholar |
[14] S. M. Valone, J. Chem. Phys. 1980, 73, 4653.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. P. Perdew, R. G. Parr, M. Levy, J. L. Balduz, Phys. Rev. Lett. 1982, 49, 1691.
| Crossref | GoogleScholarGoogle Scholar |
[16] E. H. Lieb, Int. J. Quantum Chem. 1983, 24, 243.
| Crossref | GoogleScholarGoogle Scholar |
[17] A. Savin, Theor. Comput. Chem. 1996, 4, 327.
| Crossref | GoogleScholarGoogle Scholar |
[18] P. W. Ayers, Phys. Rev. A 2006, 73, 012513.
| Crossref | GoogleScholarGoogle Scholar |
[19] T. Gould, S. Pittalis, Phys. Rev. Lett. 2017, 119, 243001.
| Crossref | GoogleScholarGoogle Scholar | 29286753PubMed |
[20] T. Gould, S. Pittalis, Phys. Rev. Lett. 2019, 123, 016401.
| Crossref | GoogleScholarGoogle Scholar | 31386423PubMed |
[21] B. Senjean, E. Fromager, Phys. Rev. A 2018, 98, 022513.
| Crossref | GoogleScholarGoogle Scholar |
[22] M. Filatov, S. Shaik, Chem. Phys. Lett. 1999, 304, 429.
| Crossref | GoogleScholarGoogle Scholar |
[23] O. Franck, E. Fromager, Mol. Phys. 2014, 112, 1684.
| Crossref | GoogleScholarGoogle Scholar |
[24] M. Filatov, M. Huix-Rotllant, I. Burghardt, J. Chem. Phys. 2015, 142, 184104.
| Crossref | GoogleScholarGoogle Scholar | 25978880PubMed |
[25] M. Filatov, in Density-Functional Methods for Excited States (Eds N. Ferré, M. Filatov, M. Huix-Rotllant) 2016, pp. 97–124 (Springer International Publishing: Cham).
[26] K. Deur, L. Mazouin, E. Fromager, Phys. Rev. B 2017, 95, 035120.
| Crossref | GoogleScholarGoogle Scholar |
[27] K. Deur, E. Fromager, J. Chem. Phys. 2019, 150, 094106.
| Crossref | GoogleScholarGoogle Scholar | 30849903PubMed |
[28] Z.-h. Yang, J. R. Trail, A. Pribram-Jones, K. Burke, R. J. Needs, C. A. Ullrich, Phys. Rev. A 2014, 90, 042501.
| Crossref | GoogleScholarGoogle Scholar |
[29] A. Pribram-Jones, Z.-h. Yang, J. R. Trail, K. Burke, R. J. Needs, C. A. Ullrich, J. Chem. Phys. 2014, 140, 18A541.
| Crossref | GoogleScholarGoogle Scholar | 24832349PubMed |
[30] M. Filatov, WIREs Comput. Mol. Sci. 2015, 5, 146.
| Crossref | GoogleScholarGoogle Scholar |
[31] Z.-h. Yang, A. Pribram-Jones, K. Burke, C. A. Ullrich, Phys. Rev. Lett. 2017, 119, 033003.
| Crossref | GoogleScholarGoogle Scholar | 28777595PubMed |
[32] T. Gould, L. Kronik, S. Pittalis, J. Chem. Phys. 2018, 148, 174101.
| Crossref | GoogleScholarGoogle Scholar | 29739200PubMed |
[33] M. Levy, Phys. Rev. A 1982, 26, 1200.
| Crossref | GoogleScholarGoogle Scholar |
[34] M. Perarnau-Llobet, K. V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, A. Acín, Phys. Rev. X 2015, 5, 041011.
| Crossref | GoogleScholarGoogle Scholar |
[35] H. Brandi, M. D. Matos, R. Ferreira, Chem. Phys. Lett. 1980, 73, 597.
| Crossref | GoogleScholarGoogle Scholar |
[36] N. I. Gidopoulos, P. G. Papaconstantinou, E. K. U. Gross, Phys. Rev. Lett. 2002, 88, 033003.
| Crossref | GoogleScholarGoogle Scholar | 11801057PubMed |
[37] E. Pastorczak, K. Pernal, J. Chem. Phys. 2014, 140, 18A514.
| Crossref | GoogleScholarGoogle Scholar | 24832322PubMed |
[38] P. W. Ayers, M. Levy, A. Nagy, J. Chem. Phys. 2015, 143, 191101.
| Crossref | GoogleScholarGoogle Scholar | 26590518PubMed |
[39] T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic Structure Theory 2002 (John Wiley & Sons: Hoboken, NJ).
[40] A. K. Theophilou, N. I. Gidopoulos, Int. J. Quantum Chem. 1995, 56, 333.
| Crossref | GoogleScholarGoogle Scholar |
[41] A. K. Theophilou, Int. J. Quantum Chem. 1997, 61, 333.
| Crossref | GoogleScholarGoogle Scholar |
[42] A. K. Theophilou, P. G. Papaconstantinou, Phys. Rev. A 2000, 61, 022502.
| Crossref | GoogleScholarGoogle Scholar |
[43] N. Hadjisavvas, A. Theophilou, Phys. Rev. A 1985, 32, 720.
| Crossref | GoogleScholarGoogle Scholar |
[44] Recently, Fromager and coworkers (refs [21, 27]) have pointed out that the exibility of GOK can be exploited even further, in such a way to access single excited levels from calculations that need to refer only to a single ensemble-density-functional.
[45] O. Gunnarsson, B. I. Lundqvist, Phys. Rev. B 1976, 13, 4274.
| Crossref | GoogleScholarGoogle Scholar |
[46] N. Gidopoulos, P. Papaconstantinou, E. Gross, Physica B 2002, 318, 328.
| Crossref | GoogleScholarGoogle Scholar |
[47] T. Gould, J. F. Dobson, J. Chem. Phys. 2013, 138, 014103.
| Crossref | GoogleScholarGoogle Scholar | 23298024PubMed |
[48] J. B. Krieger, Y. Li, G. J. Iafrate, Phys. Rev. A 1992, 45, 101.
| Crossref | GoogleScholarGoogle Scholar | 9906704PubMed |
[49] T. Gould, S. Pittalis, J. Toulouse, E. Kraisler, L. Kronik, Phys. Chem. Chem. Phys. 2019, 21, 19805.
| Crossref | GoogleScholarGoogle Scholar | 31490521PubMed |
[50] R. Garrick, A. Natan, T. Gould, L. Kronik, Phys. Rev. X ; 2019,
| Crossref | GoogleScholarGoogle Scholar |