Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Electron Transfer in a Naphthalene Diimide System Studied by Single-Molecule Delayed Fluorescence*

Rosalind P. Cox https://orcid.org/0000-0003-1969-923X A , Saman Sandanayake B , Steven J. Langford https://orcid.org/0000-0001-7149-996X C and Toby D. M. Bell https://orcid.org/0000-0002-4570-5595 A D
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B Addtec Pty Ltd, 264 George Street, Sydney, NSW 2000, Australia.

C Department of Chemistry and Biotechnology, Swinburne University, John Street, Hawthorn, Vic. 3122, Australia.

D Corresponding author. Email: toby.bell@monash.edu

Australian Journal of Chemistry 73(8) 699-704 https://doi.org/10.1071/CH19555
Submitted: 26 October 2019  Accepted: 12 December 2019   Published: 27 April 2020

Abstract

Electron transfer (ET) is a key chemical reaction in nature and has been extensively studied in bulk systems, but remains challenging to investigate at the single-molecule level. A previously reported naphthalene diimide (NDI)-based system (Higginbotham et al., Chem. Commun. 2013, 49, 5061–5063) displays delayed fluorescence with good quantum yield (~0.5) and long-lived (nanoseconds) prompt and delayed fluorescence lifetimes, providing an opportunity to interrogate the underlying ET processes in single molecules. Time-resolved single-molecule fluorescence measurements enabled forward and reverse ET rate constants to be calculated for 45 individual molecules embedded in poly(methylmethacrylate) (PMMA) film. Interpretation of the results within the framework of Marcus–Hush theory for ET demonstrates that variation in both the electronic coupling and the driving force for ET is occurring from molecule to molecule within the PMMA film and over time for individual molecules.


References

[1]  W. E. Moerner, J. Phys. Chem. B 2002, 106, 910.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  M. B. J. Roeffaers, G. de Cremer, H. Uji-i, B. Muls, B. F. Sels, P. A. Jacobs, F. C. De Schryver, D. E. De Vos, J. Hofkens, Proc. Natl. Acad. Sci. USA 2007, 104, 12603.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  K. P. F. Janssen, G. de Cremer, R. K. Neely, A. V. Kubarev, J. van Loon, J. A. Martens, D. E. de Vos, M. B. J. Roeffers, J. Hofkens, Chem. Soc. Rev. 2014, 43, 990.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  D. Woll, E. Braeken, A. Deres, F. C. de Schryver, H. Uji-i, J. Hofkens, Chem. Soc. Rev. 2009, 38, 313.
         | Crossref | GoogleScholarGoogle Scholar | 19169450PubMed |

[5]  T. Ha, Methods 2001, 25, 78.
         | Crossref | GoogleScholarGoogle Scholar | 11558999PubMed |

[6]  S. Hohng, C. Joo, T. Ha, Biophys. J. 2004, 87, 1328.
         | Crossref | GoogleScholarGoogle Scholar | 15298935PubMed |

[7]  T. Weil, T. Vosch, J. Hofkens, K. Peneva, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 9068.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  M. Heilemann, E. Margeat, R. Kasper, M. Sauer, P. Tinnefeld, J. Am. Chem. Soc. 2005, 127, 3801.
         | Crossref | GoogleScholarGoogle Scholar | 15771514PubMed |

[9]  T. Klein, S. Proppert, M. Sauer, Histochem. Cell Biol. 2014, 141, 561.
         | Crossref | GoogleScholarGoogle Scholar | 24496595PubMed |

[10]  M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, Angew. Chem. Int. Ed. 2008, 47, 6172.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  D. R. Whelan, T. D. M. Bell, J. Phys. Chem. Lett. 2015, 6, 374.
         | Crossref | GoogleScholarGoogle Scholar | 26261950PubMed |

[12]  C. C. Moser, J. M. Keske, K. Warncke, R. S. Farid, P. L. Dutton, Nature 1992, 355, 796.
         | Crossref | GoogleScholarGoogle Scholar | 1311417PubMed |

[13]  C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  H. P. Lu, X. S. Xie, J. Phys. Chem. B 1997, 101, 2753.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  M. W. Holman, R. Liu, D. M. Adams, J. Am. Chem. Soc. 2003, 125, 12649.
         | Crossref | GoogleScholarGoogle Scholar | 14531709PubMed |

[16]  H. Yang, G. Luo, P. Karnchanaphanurach, T.-M. Louie, I. Rech, S. Cova, L. Xun, X. S. Xie, Science 2003, 302, 262.
         | Crossref | GoogleScholarGoogle Scholar | 14551431PubMed |

[17]  R. Liu, M. W. Holman, L. Zang, D. M. Adams, J. Phys. Chem. A 2003, 107, 6522.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  L. Zang, R. Liu, M. W. Holman, K. T. Nguyen, D. M. Adams, J. Am. Chem. Soc. 2002, 124, 10640.
         | Crossref | GoogleScholarGoogle Scholar | 12207503PubMed |

[19]  M. A. Izquierdo, T. D. M. Bell, S. Habuchi, E. Fron, R. Pilot, T. Vosch, S. de Feyter, J. Verhoeven, J. Jacob, K. Müllen, J. Hofkens, F. C. de Schryver, Chem. Phys. Lett. 2005, 401, 503.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  L. L. Patera, F. Queck, P. Scheuerer, Nature 2019, 566, 245.
         | Crossref | GoogleScholarGoogle Scholar | 30760911PubMed |

[21]  T. D. M. Bell, A. Stefan, S. Masuo, T. Vosch, L. Marc, M. Cotlet, J. Hofkens, S. Bernhardt, K. Müllen, M. van der Auweraer, J. W. Verhoeven, F. C. de Schryver, ChemPhysChem 2005, 6, 942.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. Cotlet, S. Masuo, M. Lor, E. Fron, M. van der Auweraer, K. Müllen, J. Hofkens, F. C. de Scryver, Angew. Chem. Int. Ed. 2004, 43, 6116.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  M. Cotlet, S. Masuo, G. B. Luo, J. Hofkens, M. van der Auweraer, J. Verhoeven, K. Müllen, X. L. S. Xie, F. C. de Schryver, Proc. Natl. Acad. Sci. USA 2004, 101, 14343.
         | Crossref | GoogleScholarGoogle Scholar | 15388849PubMed |

[24]  R. Gronheid, A. Stefan, M. Cotlet, J. Hofkens, J. Qu, K. Müllen, M. van der Auweraer, J. W. Verhoeven, F. C. de Schryver, Angew. Chem. Int. Ed. 2003, 42, 4209.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  T. D. M. Bell, A. Stefan, V. Lemaur, S. Bernhardt, K. Müllen, J. Cornil, D. Beljonne, J. Hofkens, M. Van de Auweraer, F. C. De Schryver, Photochem. Photobiol. Sci. 2007, 6, 406.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  C. Flors, I. Oesterling, T. Schnitzler, E. Fron, G. Schweitzer, M. Silwa, A. Herrmann, M. van de Auweraer, F. C. de Schryver, K. Müllen, J. Hofkens, J. Phys. Chem. C 2007, 111, 4861.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  E. Fron, R. Pilot, G. Schweitzer, J. Qu, A. Herrmann, K. Müllen, J. Hofkens, M. van de Auweraer, F. C. de Schryver, Photochem. Photobiol. Sci. 2008, 7, 597.
         | Crossref | GoogleScholarGoogle Scholar | 18465016PubMed |

[28]  J. Hofkens, T. D. M. Bell, A. Stefan, E. Fron, K. Müllen, F. C. De Schryver, Pure Appl. Chem. 2006, 78, 2261.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  H. F. Higginbotham, R. P. Cox, S. Sandanayake, B. A. Graystone, S. J. Langford, T. D. M. Bell, Chem. Commun. 2013, 5061.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  X. Guo, M. D. Watson, Org. Lett. 2008, 10, 5333.
         | Crossref | GoogleScholarGoogle Scholar | 18980376PubMed |

[31]  R. Ameloot, M. Roeffaers, M. Baruah, G. de Cremer, B. Sels, D. de Vos, J. Hofkens, Photochem. Photobiol. 2009, 8, 453.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  R. P. Cox, H. F. Higginbotham, B. A. Graystone, S. Sandanayake, S. J. Langford, T. D. M. Bell, Chem. Phys. Lett. 2012, 521, 59.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  E. A. Stefanescu, X. Tan, Z. Lin, N. Bowler, M. R. Kessler, Polymer 2010, 51, 5823.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  T. D. M. Bell, S. Yap, C. H. Jani, S. V. Bhosale, J. Hofkens, F. C. de Schryver, S. J. Langford, K. P. Ghiggino, Chem. Asian J. 2009, 4, 1542.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  S. Maniam, R. P. Cox, S. J. Langford, T. D. M. Bell, Chem. – Eur. J. 2015, 21, 4133.
         | Crossref | GoogleScholarGoogle Scholar | 25639556PubMed |

[36]  N. S. Hush, Trans. Faraday Soc. 1961, 57, 557.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  R. A. Marcus, J. Chem. Phys. 1956, 24, 966.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  R. A. Marcus, Annu. Rev. Phys. Chem. 1964, 15, 155.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  R. A. Marcus, N. Sutin, Biochim. Biophys. Acta 1985, 811, 265.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  R. A. L. Vallée, M. Cotlet, M. van de Auweraer, J. Hofkens, K. Müllen, F. C. de Schryver, J. Am. Chem. Soc. 2004, 126, 2296.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  R. A. L. Vallée, P. Marsal, E. Braeken, S. Habuchi, F. C. de Schryver, M. van de Auweraer, D. Beljonne, J. Hofkens, J. Am. Chem. Soc. 2005, 127, 12011.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  R. F. Kubin, A. N. Fletcher, J. Lumin. 1982, 27, 455.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  R. P. Cox, H. F. Higginbotham, B. A. Graystone, S. Sandanayake, S. J. Langford, T. D. M. Bell, Chem. Phys. Lett. 2012, 521, 59.
         | Crossref | GoogleScholarGoogle Scholar |