Syntheses and Molecular Structures of Heteroleptic and Homoleptic Antimony(iii) Tetrafluorophenylethylenediamidate Complexes*
Areej K. Aldabbagh A , Peter C. Junk A B and Jun Wang AA College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia.
B Corresponding author. Email: peter.junk@jcu.edu.au
Australian Journal of Chemistry 73(6) 504-510 https://doi.org/10.1071/CH19389
Submitted: 8 August 2019 Accepted: 17 September 2019 Published: 1 November 2019
Abstract
A series of hetero- and homoleptic organoamidoantimony(iii) complexes of the type [SbLMe3−nCln] (n = 2, 1, 0) (HLMe = p-HC6F4NH(CH2)2NMe2) incorporating a bulky amido fluorinated ligand tethered with an amino pendant arm, have been successfully synthesised and fully characterised as monomers in the solid state. [Sb(p-HC6F4NC2H4NMe2)Cl2] (1), [Sb(p-HC6F4NC2H4NMe2)2Cl] (2), and [Sb(p-HC6F4NC2H4NMe2)3] (3) were isolated by metathesis reactions involving different stoichiometric ratios between SbCl3 and Li(p-HC6F4N(CH2)2NMe2) (LiLMe) in non-coordinating solvents, while [Sb(p-HC6F4NC2H4NMe2)Cl2] (1) was also synthesised by the direct reaction between SbCl3 and HLMe in THF providing an interesting alternative pathway to access these types of compounds.
References
[1] G. B. Deacon, C. M. Forsyth, P. C. Junk, R. P. Kelly, A. Urbatsch, J. Wang, Dalton Trans. 2012, 41, 8624.| Crossref | GoogleScholarGoogle Scholar | 22678708PubMed |
[2] G. B. Deacon, P. C. Junk, R. P. Kelly, J. Wang, Dalton Trans. 2016, 45, 1422.
| Crossref | GoogleScholarGoogle Scholar | 26673146PubMed |
[3] G. B. Deacon, P. C. Junk, R. P. Kelly, Aust. J. Chem. 2013, 66, 1288.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) D. P. Buxton, G. B. Deacon, B. M. Gatehouse, I. L. Grayson, D. St. C. Black, Aust. J. Chem. 1988, 41, 943.
| Crossref | GoogleScholarGoogle Scholar |
(b) G. B. Deacon, B. M. Gatehouse, J. Ireland, Aust. J. Chem. 1991, 41, 943.
(c) A. Battle, A. M. Bond, A. Chow, D. P. Daniels, G. B. Deacon, T. W. Hambley, P. C. Junk, D. M. Mason, J. Wang, J. Fluor. Chem. 2010, 131, 1229.
| Crossref | GoogleScholarGoogle Scholar |
[5] For the biological activity of these platinum complexes, see: T. Talarico, D. R. Phillips, G. B. Deacon, S. Rainone, L. K. Webster, Invest. New Drugs 1999, 17, 1.
| Crossref | GoogleScholarGoogle Scholar | 10555118PubMed |
[6] (a) P. C. Andrews, G. B. Deacon, R. L. Ferrero, P. C. Junk, A. Karrar, I. Kumar, J. G. McLellan, Dalton Trans. 2009, 6377.
| Crossref | GoogleScholarGoogle Scholar | 19655072PubMed |
(b) P. C. Andrews, R. L. Ferrero, P. C. Junk, I. Kumar, Q. Luu, K. Nguyen, J. W. Taylor, Dalton Trans. 2010, 39, 2861.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. C. Andrews, M. Busse, G. B. Deacon, R. L. Ferrero, P. C. Junk, K. K. Huynh, I. Kumar, J. G. MacLellan, Dalton Trans. 2010, 39, 9633.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. C. Andrews, R. Frank, P. C. Junk, L. Kedzierski, I. Kumar, J. G. MacLellan, J. Inorg. Biochem. 2011, 105, 454.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. C. Andrews, R. L. Ferrero, C. M. Forsyth, P. C. Junk, J. G. Maclellan, R. M. Peiris, Organometallics 2011, 30, 6283.
| Crossref | GoogleScholarGoogle Scholar |
(f) P. C. Andrews, R. L. Ferrero, P. C. Junk, J. G. Maclellan, R. M. Peiris, Aust. J. Chem. 2012, 65, 883.
| Crossref | GoogleScholarGoogle Scholar |
(g) P. C. Andrews, M. Busse, G. B. Deacon, R. L. Ferrero, P. C. Junk, J. G. MacLellan, A. Vom, Dalton Trans. 2012, 41, 11798.
| Crossref | GoogleScholarGoogle Scholar |
(h) P. C. Andrews, R. L. Ferrero, P. C. Junk, R. M. Peiris, J. Organomet. Chem. 2013, 724, 88.
| Crossref | GoogleScholarGoogle Scholar |
(i) P. C. Andrews, V. L. Blair, R. L. Ferrero, P. C. Junk, I. Kumar, Chem. Commun. 2013, 49, 2870.
| Crossref | GoogleScholarGoogle Scholar |
(j) M. Busse, I. Trinh, P. C. Junk, R. L. Ferrero, P. C. Andrews, Chem. – Eur. J. 2013, 19, 5264.
| Crossref | GoogleScholarGoogle Scholar |
(k) P. C. Andrews, P. C. Junk, L. Kezierski, R. M. Peiris, Aust. J. Chem. 2013, 66, 1297.
| Crossref | GoogleScholarGoogle Scholar |
(l) P. C. Andrews, V. L. Blair, R. L. Ferrero, P. C. Junk, L. Kedzierski, R. M. Peiris, Dalton Trans. 2014, 43, 1279.
| Crossref | GoogleScholarGoogle Scholar |
(m) M. Busse, E. Border, P. C. Junk, R. L. Ferrero, P. C. Andrews, Dalton Trans. 2014, 43, 17980.
| Crossref | GoogleScholarGoogle Scholar |
(n) A. Pathak, V. L. Blair, R. L. Ferrero, P. C. Junk, R. F. Tabor, P. C. Andrews, Dalton Trans. 2015, 44, 16903.
| Crossref | GoogleScholarGoogle Scholar |
[7] K. Mueller, C. Faeh, F. Diederich, Science 2007, 317, 1881.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) A search of the CCDC (Conquest 2.0.0) in August 2019, found several hits for antimony compounds with a monoanionic N,N-bidentate ligand such as guanidinate, amidinate, β-diketiminate ligands and others. See for example: F. Weller, J. Pebler, K. Dehnicke, K. Hartke, H.-M. Wolf, Z. Anorg. Allg. Chem. 1982, 61, 486.
(b) W. Hoeneise, W. Schwarz, G. Heckmann, A. Schmidt, Z. Anorg. Allg. Chem. 1986, 55, 533.
(c) J. L. Stewart, R. A. Andersen, Polyhedron 1998, 17, 953.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. L. Raston, B. W. Skelton, V. A. Tolhurst, A. H. White, J. Chem. Soc., Dalton Trans. 2000, 1279.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. P. Green, C. Jones, A. Stasch, Inorg. Chem. 2007, 46, 8.
| Crossref | GoogleScholarGoogle Scholar |
(f) B. Lyhs, S. Schulz, U. Westphal, D. Bläser, R. Boese, M. Bolte, Eur. J. Inorg. Chem. 2009, 2247.
| Crossref | GoogleScholarGoogle Scholar |
(g) I. Vránová, R. Jambor, A. Růžička, A. Hoffmann, S. Herres-Pawlis, L. Dostál, Dalton Trans. 2015, 44, 395.
| Crossref | GoogleScholarGoogle Scholar |
(h) S. S. Chitnis, A. P. M. Robertson, N. Burford, B. O. Patrick, R. McDonald, M. J. Ferguson, Chem. Sci. 2015, 6, 2559.
| Crossref | GoogleScholarGoogle Scholar |
(i) N. Harmgarth, F. Zörner, P. Liebing, E. P. Burte, M. Silinskas, F. Engelhardt, F. T. Edelmann, Z. Anorg. Allg. Chem. 2017, 643, 1150.There are several compounds with tridentate ligands with N or other donor atoms, and more with neutral N,N-bidentate ligands.
| Crossref | GoogleScholarGoogle Scholar |
[9] L. A. Lesikar, A. F. Gushwa, A. F. Richards, J. Organomet. Chem. 2008, 693, 3245.
| Crossref | GoogleScholarGoogle Scholar |
[10] P. Pyykkö, M. Atsumi, Chem. – Eur. J. 2009, 15, 12770.
| Crossref | GoogleScholarGoogle Scholar | 19856342PubMed |
[11] I. Vranova, R. Jambor, A. Ruzicka, A. Hoffmann, S. Herres-Pawlis, L. Dostal, Dalton Trans. 2015, 44, 395.
| Crossref | GoogleScholarGoogle Scholar | 25385247PubMed |
[12] D. P. Buxton, G. B. Deacon, B. M. Gatehouse, I. L. Grayson, D. S. Black, Aust. J. Chem. 1988, 41, 943.
| Crossref | GoogleScholarGoogle Scholar |
[13] T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
| Crossref | GoogleScholarGoogle Scholar | 12409628PubMed |
[14] G. M. Sheldrick, Acta Crystallogr. C Struct. Chem. 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar | 25567568PubMed |
[15] L. J. Barbour, J. Supramol. Chem. 2001, 1, 189.
| Crossref | GoogleScholarGoogle Scholar |