Synthesis and Structures of Bis- and Tris-(triphenylarsine)gold(i) Iodides
Graham A. Bowmaker A E , Peter C. Healy B , Alexandre N. Sobolev C and Allan H. White C DA School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
B School of Natural Sciences, Griffith University, Nathan, Qld 4111, Australia.
C School of Molecular Sciences, Chemistry M310, The University of Western Australia, Perth, WA 6009, Australia.
D Deceased.
E Corresponding author. Email: ga.bowmaker@auckland.ac.nz
Australian Journal of Chemistry 73(6) 497-503 https://doi.org/10.1071/CH19340
Submitted: 25 July 2019 Accepted: 17 September 2019 Published: 1 November 2019
Abstract
The title compounds [(Ph3As)2AuI] and [(Ph3As)3AuI] have been crystallized from equimolar solutions of Bu4NAuI2 and AsPh3 in dimethylformamide and structurally characterized by single crystal X-ray diffraction studies. [(Ph3As)2AuI] crystallizes in space group C2/c, Z 4, and is isomorphous with other [(Ph3E)2MX] (MX = coinage metal(i) salt) arrays, with the Au–I bond being disposed on a crystallographic 2-axis: Au–I, As 2.7008(2), 2.4337(2) Å, As–Au–As, I 125.736(8)°, 117.132(4)° (153 K). [(Ph3As)3AuI] crystallizes as a triclinic phase in space group , Z 4, and is isomorphous with [(Ph3Sb)3CuI] and [(Ph3P)3AgI]: Au–As 2.4847–2.5049(10), Au–I 2.8518(8), 2.8597(7) Å with As–Au–As, I 109.67(3)–115.97(3)°, 101.33(2)–106.85(3)°. A second ‘[(Ph3As)3AuI]’ product was obtained as a co-crystalline phase in space group P21/n containing [(Ph3As)3AuI], and [(Ph3As)2AuI] accompanied by an additional unbound Ph3As molecule, i.e. [(Ph3As)3AuI]·[(Ph3As)2AuI·Ph3As], with structural parameters closely similar to those for the corresponding separate [(Ph3As)3AuI] and [(Ph3As)2AuI] complexes described above. Comparison of the bond lengths for these and related complexes show that they are generally consistent with the ‘gold is smaller than silver’ phenomenon caused by relativistic orbital contraction effects in gold, but the results also show that the magnitude of this effect is dependent on the nature of the metal–ligand bonds involved, and on changes in the metal coordination environment, which can in some circumstances yield trends in which the effect on particular bonds is partially masked or even reversed.
References
[1] G. A. Bowmaker, Effendy, R. D. Hart, J. D. Kildea, A. H. White, Aust. J. Chem. 1997, 50, 653.| Crossref | GoogleScholarGoogle Scholar |
[2] (a) G. A. Bowmaker, R. D. Hart, J. D. Kildea, E. N. de Silva, B. W. Skelton, A. H. White, Aust. J. Chem. 1997, 50, 604.
| Crossref | GoogleScholarGoogle Scholar |
(b) R. D. Hart, G. A. Bowmaker, E. N. de Silva, B. W. Skelton, A. H. White, Aust. J. Chem. 1997, 50, 621.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. A. Bowmaker, Effendy, J. D. Kildea, E. N. de Silva, A. H. White, Aust. J. Chem. 1997, 50, 627.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. A. Bowmaker, Effendy, E. N. de Silva, A. H. White, Aust. J. Chem. 1997, 50, 641.
| Crossref | GoogleScholarGoogle Scholar |
(e) Z. Travnicek, P. Kopel, J. Marek, Acta Univ. Palacki. Olomuc. 1998, 37, 55.
[3] (a) R. D. Hart, G. A. Bowmaker, E. N. de Silva, B. W. Skelton, A. H. White, Aust. J. Chem. 1997, 50, 553.
| Crossref | GoogleScholarGoogle Scholar |
(b) R. D. Hart, G. A. Bowmaker, A. H. White, Aust. J. Chem. 1997, 50, 567.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. A. Bowmaker, Effendy, J. D. Kildea, A. H. White, Aust. J. Chem. 1997, 50, 577.
| Crossref | GoogleScholarGoogle Scholar |
(d) Effendy, J. D. Kildea, A. H. White, Aust. J. Chem. 1997, 50, 587.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) S. P. C. Dunstan, P. C. Healy, A. N. Sobolev, E. R. T. Tiekink, A. H. White, M. L. Williams, J. Mol. Struct. 2014, 1072, 253.
| Crossref | GoogleScholarGoogle Scholar |
(b) B. Weissbart, L. J. Larson, M. M. Olmstead, C. P. Nash, D. S. Tinti, Inorg. Chem. 1995, 34, 393.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. W. B. Einstein, R. Restivo, Acta Crystallogr. 1975, B31, 624.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) P. G. Jones, Acta Crystallogr. 1992, C48, 1487.
(b) U. M. Tripathi, A. Bauer, H. Schmidbaur, J. Chem. Soc., Dalton Trans. 1997, 2865.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) G. A. Bowmaker, J. C. Dyason, P. C. Healy, L. M. Engelhardt, C. Pakawatchai, A. H. White, J. Chem. Soc., Dalton Trans. 1987, 1089.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Hoshino, H. Uekusa, S. Sonoda, T. Otsuka, Y. Kaizu, Dalton Trans. 2009, 3085.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Hoshino, H. Uekusa, S. Ishii, T. Otsuka, Y. Kaizu, Y. Ozawa, K. Toriuma, Inorg. Chem. 2010, 49, 7257.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Frankel, J. Kniczek, W. Ponikwar, H. Noeth, K. Polborn, W. P. Fehlhammer, Inorg. Chim. Acta 2001, 312, 23.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) P. G. Jones, G. M. Sheldrick, J. A. Muir, M. M. Muir, L. B. Pulgar, J. Chem. Soc., Dalton Trans. 1982, 2123.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Hamel, A. Schier, H. Schmidbaur, Z. Naturforsch B 2002, 57, 877.
| Crossref | GoogleScholarGoogle Scholar |
[8] A. D. Westland, Can. J. Chem. 1969, 47, 4135.
| Crossref | GoogleScholarGoogle Scholar |
[9] G. M. Sheldrick, Acta Crystallogr. C Struct. Chem. 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar | 25567568PubMed |
[10] P. H. Davis, R. L. Belford, I. C. Paul, Inorg. Chem. 1973, 12, 213.
| Crossref | GoogleScholarGoogle Scholar |
[11] G. A. Bowmaker, Effendy, J. V. Hanna, P. C. Healy, B. W. Skelton, A. H. White, J. Chem. Soc., Dalton Trans. 1993, 1387.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. Camalli, F. Caruso, Inorg. Chim. Acta 1987, 127, 209.
| Crossref | GoogleScholarGoogle Scholar |
[13] A. Cassel, Acta Crystallogr. 1981, B37, 229.
| Crossref | GoogleScholarGoogle Scholar |
[14] J. T. Gill, J. J. Mayerle, P. S. Welcker, D. F. Lewis, D. A. Ucko, D. J. Barton, D. Stowens, S. J. Lippard, Inorg. Chem. 1976, 15, 1155.
| Crossref | GoogleScholarGoogle Scholar |
[15] A. Bayler, A. Schier, G. A. Bowmaker, H. Schmidbaur, J. Am. Chem. Soc. 1996, 118, 7006.
| Crossref | GoogleScholarGoogle Scholar |
[16] P. Schwerdtfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowmaker, P. D. W. Boyd, J. Chem. Phys. 1989, 91, 1762.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) G. A. Bowmaker, J. D. Cotton, P. C. Healy, J. D. Kildea, S. B. Silong, B. W. Skelton, A. H. White, Inorg. Chem. 1989, 28, 1462.
| Crossref | GoogleScholarGoogle Scholar |
(b) L.-J. Baker, G. A. Bowmaker, D. Camp, Effendy, P. C. Healy, H. Schmidbaur, O. Steigelmann, A. H. White, Inorg. Chem. 1992, 31, 3656.
| Crossref | GoogleScholarGoogle Scholar |
(c) L.-J. Baker, G. A. Bowmaker, R. D. Hart, P. Harvey, P. C. Healy, A. H. White, Inorg. Chem. 1994, 33, 3925.
| Crossref | GoogleScholarGoogle Scholar |
(d) L.-J. Baker, R. C. Bott, G. A. Bowmaker, P. C. Healy, B. W. Skelton, P. Schwerdtfeger, A. H. White, J. Chem. Soc., Dalton Trans. 1995, 1341.
| Crossref | GoogleScholarGoogle Scholar |
[18] L.-J. Baker, G. A. Bowmaker, Effendy, B. W. Skelton, A. H. White, Aust. J. Chem. 1992, 45, 1909.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) L. M. Engelhardt, P. C. Healy, V. A. Patrick, A. H. White, Aust. J. Chem. 1987, 40, 1873.
| Crossref | GoogleScholarGoogle Scholar |
(b) D. E. Hibbs, M. B. Hursthouse, K. M. A. Malik, M. A. Beckett, P. W. Jones, Acta Crystallogr. 1996, C52, 884.
| Crossref | GoogleScholarGoogle Scholar |