Electrocyclic Ring-Opening of 6,6-Dichlorobicyclo[3.1.0]-hexanes and Trapping of the Resulting π-Allyl Cations by C-1 Tethered Hydroxyamine Derivatives: Formation of 2-Oxa-1-azaspiro[4.5]decan-3-ones
Jiri Mikusek A , Jas S. Ward A and Martin G. Banwell A B
+ Author Affiliations
- Author Affiliations
A Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia.
B Corresponding author. Email: Martin.Banwell@anu.edu.au
Australian Journal of Chemistry 72(6) 434-439 https://doi.org/10.1071/CH19010
Submitted: 7 January 2019 Accepted: 12 February 2019 Published: 14 March 2019
Abstract
The C-1 substituted 6,6-dichlorobicyclo[3.1.0]hexanes 1a–c have been prepared and shown to undergo electrocyclic ring-opening to give the corresponding π-allyl cations 2 that cyclise to afford the spirocyclic products 3b–d, each of which has been subjected to single-crystal X-ray analysis.
References
[1] For an overview on the electrocyclic ring-opening reactions of halocyclopropanes and related compounds, see: O. N. Faza, C. S. López, R. Álvarez, Á. R. de Lera, Org. Lett. 2004, 6, 905. and references cited therein.| Crossref | GoogleScholarGoogle Scholar | 15012061PubMed |
[2] (a) M. G. Banwell, J. E. Harvey, D. C. R. Hockless, J. Org. Chem. 2000, 65, 4241.
| Crossref | GoogleScholarGoogle Scholar | 10891122PubMed |
(b) M. Banwell, A. Edwards, J. Harvey, D. Hockless, A. Willis, J. Chem. Soc., Perkin Trans. 1 2000, 2175.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. G. Banwell, J. E. Harvey, K. A. Jolliffe, J. Chem. Soc., Perkin Trans. 1 2001, 2002.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. G. Banwell, F. Vogt, A. W. Wu, Aust. J. Chem. 2006, 59, 415.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. C. Stanislawski, A. C. Willis, M. G. Banwell, Chem. Asian J. 2007, 2, 1127.
| Crossref | GoogleScholarGoogle Scholar |
(f) P. Lan, M. G. Banwell, A. C. Willis, J. Org. Chem. in press.
| Crossref | GoogleScholarGoogle Scholar |
[3] J. E. Baldwin, J. Chem. Soc. Chem. Commun. 1976, 734.
| Crossref | GoogleScholarGoogle Scholar |
[4] For some examples of the use of hydroxylamine derivatives as nucleophiles in cyclisation reactions leading to isoxazoles, see: R. W. Bates, Tetrahedron Lett. 2018, 59, 559. and references cited therein.
| Crossref | GoogleScholarGoogle Scholar |
[5] For a general discussion on the use of spirocyclic scaffolds in drug discovery, see: Y. Zheng, C. M. Tice, S. B. Singh, Bioorg. Med. Chem. Lett. 2014, 24, 3673.
| Crossref | GoogleScholarGoogle Scholar | 25052427PubMed |
[6] (a) For some leading references to the synthesis of 2-oxa-1-azaspiro[4.5]decanes, the corresponding decan-3-ones and/or their development as drug scaffolds, see: P. Armstrong, R. Grigg, W. J. Warnock, J. Chem. Soc. Chem. Commun. 1987, 1325.
| Crossref | GoogleScholarGoogle Scholar |
(b) G. B. Mullen, P. A. Swift, V. St. Georgiev, J. Pharm. Sci. 1987, 76, 930.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. B. Snider, H. Lin, Org. Lett. 2000, 2, 643.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. S. Wilson, A. Padwa, J. Org. Chem. 2008, 73, 9601.
| Crossref | GoogleScholarGoogle Scholar |
(e) E. Dumez, A.-C. Durand, M. Guillaume, P.-Y. Roger, R. Faure, J.-M. Pons, G. Herbette, J.-P. Dulcére, D. Bonne, J. Rodriguez, Chem. – Eur. J. 2009, 15, 12470.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. Nocker, S. Handschuh, C. Tautermann, K. R. Liedl, J. Chem. Inf. Model. 2009, 49, 2067.
| Crossref | GoogleScholarGoogle Scholar |
(g) G. S. Creech, O. Kwon, J. Am. Chem. Soc. 2010, 132, 8876.
| Crossref | GoogleScholarGoogle Scholar |
(h) P. Li, B.-T. Teng, F.-G. Jin, X.-S. Li, W.-D. Zhu, J.-W. Xie, Org. Biomol. Chem. 2012, 10, 244.
| Crossref | GoogleScholarGoogle Scholar |
(i) Shamsuzzaman, H. Khanam, A. Mashrai, N. Siddiqui, Tetrahedron Lett. 2013, 54, 874.
(j) S. Shah, R. Badru, B. Singh, Synth. Commun. 2013, 43, 1073.
| Crossref | GoogleScholarGoogle Scholar |
(k) S. Shah, B. Singh, J. Heterocycl. Chem. 2013, 50, 959.
| Crossref | GoogleScholarGoogle Scholar |
(l) C. Wang, Z. Wang, X. Xie, X. Yao, G. Li, L. Zu, Org. Lett. 2017, 19, 1828.
| Crossref | GoogleScholarGoogle Scholar |
[7] S. M. King, S. B. Herzon, in The Alkaloids: Chemistry and Biology (Ed. H.-J. Knölker) 2014, Vol. 73, pp. 161–222 (Elsevier: Boston, MA).
[8] M. G. Banwell, M. E. Reum, in Advances in Strain in Organic Chemistry (Ed. B. Halton) 1991, Vol. 1. pp. 19–64 (JAI Press: Greenwich, CT) and references cited therein.
[9] E. J. Eisenbraun, Org. Synth. 1965, 45, 28.
| Crossref | GoogleScholarGoogle Scholar |
[10] Q. Dai, P. Li, N. Ma, C. Hu, Org. Lett. 2016, 18, 5560.
| Crossref | GoogleScholarGoogle Scholar | 27754691PubMed |
[11] A. Porcheddu, L. De Luca, G. Giacomelli, Synlett 2009, 2149.
| Crossref | GoogleScholarGoogle Scholar |
[12] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
| Crossref | GoogleScholarGoogle Scholar |
[13] A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
| Crossref | GoogleScholarGoogle Scholar |
[14] Agilent, CrysAlis PRO 2014 (Agilent Technologies Ltd: Yarnton, Oxfordshire, England).
[15] G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3.
[16] G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.
[17] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar |