Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Preparation and Characterization of a PVDF Membrane Modified by an Ionic Liquid

Pengzhi Bei A , Hongjing Liu A B , Hui Yao A , Yang Jiao A , Yuanyuan Wang A and Liying Guo A
+ Author Affiliations
- Author Affiliations

A School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, China.

B Corresponding author. Email: liuhongjing_101@126.com

Australian Journal of Chemistry 72(6) 425-433 https://doi.org/10.1071/CH18447
Submitted: 6 September 2018  Accepted: 11 February 2019   Published: 15 March 2019

Abstract

In order to enhance the hydrophobicity of polyvinylidene fluoride (PVDF) porous membranes, the blending of PVDF with a hydrophobic ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) was carried out. The modified PVDF membranes with [Bmim][PF6] were fabricated through a non-solvent induced phase inversion using lithium chloride as a porogen in the PVDF casting solution. The effects of [Bmim][PF6] on the membrane characteristics were investigated. FT-IR analysis indicates that the IL is successfully retained by the PVDF membrane. Thermogravimetric analysis reveals that the optimum temperature of the modified membrane is below 300°C. Scanning electron microscopy pictures show that modified membranes have more homogeneous and larger diameter pores with a mean pore size of 0.521 µm and porosity of 78 %. By measuring the IL leaching during the membrane fabrication, it was found that the modified membrane does not lose IL. Atomic force microscopy shows that the roughness of the modified membrane surface increases slightly, but the contact angle of the modified membrane increases significantly from 88.1° to 110.1°. The reason for this is that the fluorine-containing IL has a low surface energy, which can enhance the hydrophobicity of the membrane. Finally, by comparing modified membranes with different IL concentrations, we draw a conclusion that the modified membrane with an IL concentration of 3 wt-% has the best properties of pore size, porosity, and hydrophobicity.


References

[1]  M. Mehdipour, P. Keshavarz, A. Seraji, S. Masoumi, Int. J. Greenh. Gas Control 2014, 31, 16.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  R. Naim, A. F. Ismail, T. Matsuura, I. A. Rudaini, S. Abdullah, RSC Advances 2018, 8, 3556.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  M. Saidi, J. Membr. Sci. 2017, 524, 186.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  Y. F. Lin, J. W. Kuo, Chem. Eng. J. 2016, 300, 29.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  Y. F. Lin, C. H. Chen, K. L. Tung, T. Y. Wei, S. Y. Lu, K. S. Chang, ChemSusChem 2013, 6, 437.
         | Crossref | GoogleScholarGoogle Scholar | 23417984PubMed |

[6]  L. Gomez-Coma, A. Garea, J. C. Rouch, T. Savart, J. F. Lahitte, J. C. Remigy, A. Irabien, J. Membr. Sci. 2016, 498, 218.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  Y. F. Lin, C. C. Ko, C. H. Chen, K. L. Tung, K. S. Chang, T. W. Chung, Appl. Energy 2014, 129, 25.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  S. Rajabzadeh, S. Yoshimoto, M. Teramoto, M. Al-Marzouqi, Y. Ohmukai, T. Maruyama, H. Matsuyama, Separ. Purif. Tech. 2013, 108, 65.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  Y. F. Lin, W. W. Wang, C. Y. Chang, J. Mater. Chem. 2018, 6, 9489.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  W. T. Xu, Z. P. Zhao, M. Lin, K. C. Chen, J. Membr. Sci. 2015, 491, 110.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  C. Y. Huang, C. C. Ko, L. H. Chen, C. T. Huang, K. L. Tung, Y. C. Liao, Separ. Purif. Tech. 2018, 198, 79.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  A. L. Ahmad, W. K. W. Ramli, Separ. Purif. Tech. 2013, 103, 230.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  R. Wang, H. Y. Zhang, P. H. M. Feron, D. T. Liang, Separ. Purif. Tech. 2005, 46, 33.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  S. Rajabzadeh, S. Yoshimoto, M. Teramoto, M. Al-Marzouqi, H. Matsuyama, Separ. Purif. Tech. 2009, 69, 210.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  G. D. Kang, Y. M. Cao, J. Membr. Sci. 2014, 463, 145.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  S. Sairiam, C. H. Loh, R. Wang, R. Jiraratananon, J. Appl. Polym. Sci. 2013, 130, 610.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  M. Rahbari-Sisakht, A. F. Ismail, D. Rana, T. Matsuura, J. Membr. Sci. 2012, 415–416, 221.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  Y. Zhang, L. Wang, Y. Xu, Desalination 2015, 358, 84.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  A. Razmjou, E. Arifin, G. X. Dong, J. Mansouri, V. Chen, J. Membr. Sci. 2012, 415–416, 850.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  S. H. Park, J. H. Kim, S. J. Moon, E. Drioli, Y. M. Lee, J. Membr. Sci. 2018, 550, 545.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  J. Albo, A. Irabien, J. Chem. Technol. Biotechnol. 2012, 87, 1502.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  G. Gurau, H. Rodríguez, S. P. Kelley, P. Janiczek, R. S. Kalb, R. D. Rogers, Angew. Chem. 2011, 50, 12024.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  I. M. Marrucho, L. C. Branco, L. P. N. Rebelo, Annu. Rev. Chem. Biomol. Eng. 2014, 5, 527.
         | Crossref | GoogleScholarGoogle Scholar | 24910920PubMed |

[24]  Z. D. Dai, R. D. Noble, D. L. Gin, X. P. Zhang, L. Y. Deng, J. Membr. Sci. 2016, 497, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  R. Shindo, M. Kishida, H. Sawa, T. Kidesaki, S. Sato, S. Kanehashi, K. Nagai, J. Membr. Sci. 2014, 454, 330.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  Y. S. Ng, N. S. Jayakumar, M. A. Hashim, Desalination 2011, 278, 250.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  D. S. Lakshmi, S. Santoro, E. Avruscio, A. Tagarelli, A. Figoli, Int. J. Membr. Sci. Technol. 2015, 2, 65.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  H. R. Mahdavi, N. Azizi, M. Arzani, T. Mohammadi, J. Nat. Gas Sci. Eng. 2017, 46, 275.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  A. A. Akhmetshina, I. M. Davletbaeva, E. S. Grebenschikova, T. S. Sazanova, A. N. Petukhov, A. A. Atlaskin, E. N. Razov, I. I. Zaripov, C. F. Martins, L. A. Neves, I. V. Vorotyntsev, Membranes 2015, 6, 4.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  S. K. Chaurasia, R. K. Singh, S. Chandra, CrystEngComm 2013, 15, 6022.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  B. Lin, G. Qiao, F. Q. Chu, S. Zhang, N. Y. Yuan, J. N. Ding, RSC Adv. 2017, 7, 1056.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  S. Awasthi, V. Kiran, B. Gaur, Int. J. Hydrogen Energy 2017, 42, 11710.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  S. Al-Gharabli, W. Kujawski, Z. A. El-Rub, E. M. Hamad, J. Kujawa, J. Membr. Sci. 2018, 556, 214.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  P. G. Saiz, A. C. Lopes, S. E. Barker, R. F. de Luis, M. I. Arriortua, Mater. Des. 2018, 155, 325.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  X. S. Lin, Q. Wen, Z. L. Huang, Y. Z. Cai, P. J. Halling, Z. Yang, Process Biochem. 2015, 50, 1852.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  K. Li, J. F. Kong, D. L. Wang, W. K. Teo, AIChE J. 1999, 45, 1211.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  G. Rashinkar, R. Salunkhe, J. Mol. Catal. Chem. 2010, 316, 146.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  R. Kurane, V. Gaikwad, J. Jadhav, R. Salunkhe, G. Rashinkar, Tetrahedron Lett. 2012, 53, 6361.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  A. Pinkert, K. N. Marsh, S. S. Pang, M. P. Staiger, Chem. Rev. 2009, 109, 6712.
         | Crossref | GoogleScholarGoogle Scholar | 19757807PubMed |

[40]  A. K. Gupta, R. Bajpai, J. M. Keller, J. Polym. Res. 2008, 15, 275.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  Z. Z. Yang, Y. N. Zhao, L. N. He, RSC Adv. 2011, 1, 545.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  A. H. Jadhav, G. M. Thorat, K. Lee, A. C. Lim, H. Kang, J. G. Seo, Catal. Today 2016, 265, 56.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  P. Attri, P. M. Reddy, P. Venkatesu, J. Phys. Chem. B 2010, 114, 6126.
         | Crossref | GoogleScholarGoogle Scholar | 20405882PubMed |

[44]  R. Matz, Desalination 1972, 10, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  H. Strathmann, K. Kock, P. Amar, R. W. Baker, Desalination 1975, 16, 179.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  L. Broens, F. W. Altena, C. A. Smolders, D. M. Koenhen, Desalination 1980, 32, 33.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  C. A. Smolders, A. J. Reuvers, R. M. Boom, I. M. Wienk, J. Membr. Sci. 1992, 73, 259.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  N. A. A. Sani, W. J. Lau, A. F. Ismail, J. Polym. Eng. 2014, 34, 489.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  M. Rezaei, A. F. Ismail, Gh. Bakeri, S. A. Hashemifard, T. Matsuura, Chem. Eng. J. 2015, 260, 875.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  D. Ghoshdastidar, D. Ghosh, S. Senapati, J. Phys. Chem. B 2016, 120, 492.
         | Crossref | GoogleScholarGoogle Scholar | 26726776PubMed |

[51]  S. Wongchitphimon, R. Wang, R. Jiraratananon, J. Membr. Sci. 2011, 381, 183.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  M. Rezaei, A. F. Ismail, S. A. Hashemifard, Gh. Bakeri, T. Matsuura, Int. J. Greenh. Gas Control 2014, 26, 147.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  P. G. Jin, C. Huang, J. X. Li, Y. D. Shen, L. Wang, R. Soc. Open Sci. 2017, 4, 171321.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  D. Y. Hou, G. H. Dai, H. Fan, J. Wang, C. W. Zhao, H. J. Huang, Desalination 2014, 347, 25.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  H. Lei, M. N. Xiong, J. Xiao, L. P. Zheng, Y. R. Zhu, X. X. Li, Q. X. Zhuang, Z. W. Han, Prog. Org. Coat. 2017, 103, 182.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  J. Gao, X. Xu, C. Fan, X. Wang, Y. Dai, X. Liu, Mater. Lett. 2014, 121, 219.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  H. Zhang, X. L. Lu, Z. Y. Liu, Z. Ma, S. Wu, Z. D. Li, X. Kong, J. J. Liu, C. R. Wu, J. Membr. Sci. 2018, 550, 9.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  D. Y. Hou, J. Wang, D. Qu, Z. K. Luan, C. W. Zhao, X. J. Ren, Water Sci. Technol. 2009, 59, 1219.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  L. B. Zheng, J. Wang, Y. S. Wei, Y. Zhang, K. Li, Z. J. Wu, RSC Adv. 2016, 6, 20926.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  J. Wang, L. B. Zhang, Z. J. Wu, Y. Zhang, X. H. Zhang, J. Membr. Sci. 2016, 497, 183.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  K. Ekambaram, M. Doraisamy, Desalination 2016, 385, 24.
         | Crossref | GoogleScholarGoogle Scholar |