The Transfer Direction of Photogenerated Electrons in BaTiO3/TiO2 and CaTiO3/TiO2
Lingfeng Ruan A , Rongying Jiang A , Jing Liu A and Song Liu A BA Department of Applied Chemistry, South China University of Technology, Guangzhou 510640, China.
B Corresponding author. Email: chsliu@scut.edu.cn
Australian Journal of Chemistry 71(12) 965-970 https://doi.org/10.1071/CH18360
Submitted: 26 July 2018 Accepted: 12 October 2018 Published: 8 November 2018
Abstract
BaTiO3/TiO2 and CaTiO3/TiO2 bilayer-type photocatalyst films have been prepared and characterised by X-ray diffraction, Raman, X-ray photoelectron spectroscopy, UV-vis, and scanning electron microscopy techniques. The photodeposition of silver was done to confirm the reduction positions of the titanate/TiO2 films. Silver deposited preferentially on the side of TiO2 for BaTiO3/TiO2 whereas on the side of CaTiO3 for CaTiO3/TiO2. These results imply that the direction of photogenerated electron transfer is coincident with the semiconductor physical principles. Upon exposure to light, electron–hole pairs are generated and subsequently separated by an internal electrostatic field in the titanate–TiO2 heterojunction.
References
[1] D. Yue, X. Qian, Y. Zhao, Sci. Bull. (Beijing) 2015, 60, 1791.| Crossref | GoogleScholarGoogle Scholar |
[2] C. Yu, W. Zhou, H. Liu, Y. Liu, D. D. Dionysiou, Chem. Eng. J. 2016, 287, 117.
| Crossref | GoogleScholarGoogle Scholar |
[3] S. Liu, Z. Wang, C. Yu, H. B. Wu, G. Wang, Q. Dong, J. Qiu, A. Eychmuller, X. W. David Lou, Adv. Mater. 2013, 25, 3462.
| Crossref | GoogleScholarGoogle Scholar |
[4] I. H. Tseng, J. C. S. Wu, H.-Y. Chou, J. Catal. 2004, 221, 432.
| Crossref | GoogleScholarGoogle Scholar |
[5] J. Chen, J. Cen, X. Xu, X. Li, Catal. Sci. Technol. 2016, 6, 349.
| Crossref | GoogleScholarGoogle Scholar |
[6] X. Dong, Z. Sun, X. Zhang, X. Li, S. Zheng, Aust. J. Chem. 2018, 71, 315.
| Crossref | GoogleScholarGoogle Scholar |
[7] F. Huang, Y.-B. Cheng, R. A. Caruso, Aust. J. Chem. 2011, 64, 820.
| Crossref | GoogleScholarGoogle Scholar |
[8] J. Shao, W. Sheng, M. Wang, S. Li, J. Chen, Y. Zhang, S. Cao, Appl. Catal. B 2017, 209, 311.
| Crossref | GoogleScholarGoogle Scholar |
[9] W. J. Youngblood, S.-H. A. Lee, Y. Kobayashi, E. A. Hernandez-Pagan, P. G. Hoertz, T. A. Moore, A. L. Moore, D. Gust, T. E. Mallouk, J. Am. Chem. Soc. 2009, 131, 926.
| Crossref | GoogleScholarGoogle Scholar |
[10] W. Feng, L. Lin, H. Li, B. Chi, J. Pu, J. Li, Int. J. Hydrogen Energy 2017, 42, 3938.
| Crossref | GoogleScholarGoogle Scholar |
[11] S. Kappadan, T. W. Gebreab, S. Thomas, N. Kalarikkal, Mater. Sci. Semicond. Process. 2016, 51, 42.
| Crossref | GoogleScholarGoogle Scholar |
[12] R. M. Thankachan, N. Joy, J. Abraham, N. Kalarikkal, S. Thomas, O. S. Oluwafemi, Mater. Res. Bull. 2017, 85, 131.
| Crossref | GoogleScholarGoogle Scholar |
[13] S. G. Kumar, L. G. Devi, J. Phys. Chem. A 2011, 115, 13211.
| Crossref | GoogleScholarGoogle Scholar |
[14] S. Shen, X. Wang, T. Chen, Z. Feng, C. Li, J. Phys. Chem. C 2014, 118, 12661.
| Crossref | GoogleScholarGoogle Scholar |
[15] N. Serpone, E. Borgarello, M. Graetzel, J. Chem. Soc. Chem. Commun. 1984, 342.
| Crossref | GoogleScholarGoogle Scholar |
[16] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizz, H. Hidaka, J. Photochem. Photobiol. Chem. 1995, 85, 247.
| Crossref | GoogleScholarGoogle Scholar |
[17] S. Feizpoor, A. Habibi-Yangjeh, S. Vadivel, J. Photochem. Photobiol. Chem. 2017, 341, 57.
| Crossref | GoogleScholarGoogle Scholar |
[18] J. Yu, S. Wang, J. Low, W. Xiao, Phys. Chem. Chem. Phys. 2013, 15, 16883.
| Crossref | GoogleScholarGoogle Scholar |
[19] L. Cheng, S. Qiu, J. Chen, J. Shao, S. Cao, Mater. Chem. Phys. 2017, 190, 53.
| Crossref | GoogleScholarGoogle Scholar |
[20] K. Wang, C. Shao, X. Li, X. Zhang, N. Lu, F. Miao, Y. Liu, Catal. Commun. 2015, 67, 6.
| Crossref | GoogleScholarGoogle Scholar |
[21] R. A. Smith, Semiconductors 1978 (Cambridge University Press: London).
[22] X. Huang, L. Ruan, R. Jiang, L. Guo, S. Liu, Chem. Lett. 2018, 47, 548.
| Crossref | GoogleScholarGoogle Scholar |
[23] F. R. Cesconeto, M. Borlaf, M. I. Nieto, A. P. N. de Oliveira, R. Moreno, Ceram. Int. 2018, 44, 301.
| Crossref | GoogleScholarGoogle Scholar |
[24] T. A. Kurniawan, L. Yanyan, T. Ouyang, A. B. Albadarin, G. Walker, Mater. Sci. Semicond. Process. 2018, 73, 42.
| Crossref | GoogleScholarGoogle Scholar |
[25] L. Kavan, M. Grätze, S. E. Gilbert, C. Klemenz, H. J. Scheel, J. Am. Chem. Soc. 1996, 118, 6716.
| Crossref | GoogleScholarGoogle Scholar |
[26] J. H. Kennedy, K. W. Frese, J. Electrochem. Soc. 1976, 123, 1683.
| Crossref | GoogleScholarGoogle Scholar |
[27] J. F. McCann, J. Pezy, J. Electrochem. Soc. 1981, 128, 1735.
| Crossref | GoogleScholarGoogle Scholar |
[28] H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge, S. Ito, J. Phys. Chem. B 2000, 104, 4585.
| Crossref | GoogleScholarGoogle Scholar |
[29] T. Kawahara, Y. Konishi, H. Tada, N. Tohge, J. Nishii, S. Ito, Angew. Chem. Int. Ed. 2002, 41, 2811.
| Crossref | GoogleScholarGoogle Scholar |
[30] S. K. Warkhade, G. S. Gaikwad, S. P. Zodape, U. Pratap, A. V. Maldhure, A. V. Wankhade, Mater. Sci. Semicond. Process. 2017, 63, 18.
| Crossref | GoogleScholarGoogle Scholar |
[31] X.-N. Wei, H.-L. Wang, X.-K. Wang, W.-F. Jiang, Appl. Surf. Sci. 2017, 412, 357.
| Crossref | GoogleScholarGoogle Scholar |
[32] F. Fresno, P. Reñones, E. Alfonso, C. Guillén, J. F. Trigo, J. Herrero, L. Collado, V. A. de la Peña O’Shea, Appl. Catal. B 2018, 224, 912.
| Crossref | GoogleScholarGoogle Scholar |
[33] L. Zeng, W. Song, M. Li, D. Zeng, C. Xie, Appl. Catal. B 2014, 147, 490.
| Crossref | GoogleScholarGoogle Scholar |
[34] L. Giorgi, T. Dikonimos, R. Giorgi, F. Buonocore, G. Faggio, G. Messina, N. Lisi, Nanotechnology 2018, 29, 095604.
| Crossref | GoogleScholarGoogle Scholar |
[35] W. D. Zhu, C. W. Wang, J. B. Chen, D. S. Li, F. Zhou, H. L. Zhang, Nanotechnology 2012, 23, 455204.
| Crossref | GoogleScholarGoogle Scholar |
[36] J. Lu, Y. Wang, J. Huang, J. Fei, L. Cao, C. Li, Dyes Pigments 2017, 144, 203.
| Crossref | GoogleScholarGoogle Scholar |
[37] J. C. Parker, R. W. Siegel, Appl. Phys. Lett. 1990, 57, 943.
| Crossref | GoogleScholarGoogle Scholar |
[38] T. Mazza, E. Barborini, P. Piseri, P. Milani, D. Cattaneo, A. Li Bassi, C. E. Bottani, C. Ducati, Phys. Rev. B Condens. Matter Mater. Phys. 2007, 75, 045416.
| Crossref | GoogleScholarGoogle Scholar |
[39] S. K. Gautam, F. Singh, I. Sulania, R. G. Singh, P. K. Kulriya, E. Pippel, J. Appl. Phys. 2014, 115, 143504.
| Crossref | GoogleScholarGoogle Scholar |
[40] H. Li, D. Wang, H. Fan, P. Wang, T. Jiang, T. Xie, J. Colloid Interface Sci. 2011, 354, 175.
| Crossref | GoogleScholarGoogle Scholar |
[41] J. Liu, L. Han, N. An, L. Xing, H. Ma, L. Cheng, J. Yang, Q. Zhang, Appl. Catal. B 2017, 202, 642.
| Crossref | GoogleScholarGoogle Scholar |
[42] X. Wang, Y. Tang, M.-Y. Leiw, T.-T. Lim, Appl. Catal. A 2011, 409–410, 257.
| Crossref | GoogleScholarGoogle Scholar |
[43] L. Zhang, M. S. Tse, O. K. Tan, Y. X. Wang, M. Han, J. Mater. Chem. A Mater. Energy Sustain. 2013, 1, 4497.
| Crossref | GoogleScholarGoogle Scholar |