para-Hydroxy Thiophenol-Coated CdSe/ZnS Quantum Dots as a Turn-On Fluorescent Probe for H2O2 Detection in Aqueous Media
Xiaomei Wang A , Yong Luo B , Hu Xu A C , Dan Li A and Yuhong Wang A CA Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
B State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins (Shanghai Research Institute of Chemical Industry Co., Ltd, Shanghai), Shanghai 200062, China.
C Corresponding authors. Email: xuhu@sit.edu.cn; yuhong_wang502@sit.edu.cn
Australian Journal of Chemistry 71(12) 971-977 https://doi.org/10.1071/CH18207
Submitted: 9 May 2018 Accepted: 12 October 2018 Published: 20 November 2018
Abstract
Since hydrogen peroxide plays an important role in various fields, a facile, simple, highly selective, and stable analytic method for H2O2 is desirable. Semiconductor quantum dots (QDs) have acted as a potential alternative for organic fluorophores in fluorescence analytical fields due to their superior optical properties. Herein, we report hydrophilic p-hydroxy thiophenol (p-HTP) coated CdSe/ZnS QDs (denoted as p-HTP-QDs) acting as a selective fluorescence ‘turn-on’ probe for H2O2 in aqueous media. The obtained p-HTP-QD probe exhibits weak fluorescence, which stems from hole transfer from the QDs to p-HTP. The presence of H2O2 induces an oxidative structural transformation of p-HTP in p-HTP-QDs from a phenol structure to an α-hydroxy ketone derivative, which extremely reduces the driving force for hole transfer. Thus, the QDs photoluminescence (PL) was re-switched on. Under optimized conditions, an excellent linear relationship between fluorescence response and H2O2 concentration could be produced with a linear range from 0.309 to 4.900 mM. The limit of detection of this probe was found to be 0.135 mM. Moreover, the present probe exhibited a high selectivity of H2O2 over other reactive oxygen species/reactive nitrogen species (ROS/RNS) and was successfully used in the detection of H2O2 in real water samples.
References
[1] P. Kanyong, S. Rawlinson, J. Davis, J. Electroanal. Chem. 2016, 766, 147.| Crossref | GoogleScholarGoogle Scholar |
[2] A. A. Ensafi, M. M. Abarghoui, B. Rezaei, Sens. Actuators B 2014, 196, 398.
| Crossref | GoogleScholarGoogle Scholar |
[3] M. Sivakumar, M. Sakthivel, S. M. Chen, V. Veeramani, W. L. Chen, G. Bharath, R. Madhu, N. Miyamoto, Ionics 2017, 23, 2193.
| Crossref | GoogleScholarGoogle Scholar |
[4] H. Ohshima, M. Tatemichi, T. Sawa, Arch. Biochem. Biophys. 2003, 417, 3.
| Crossref | GoogleScholarGoogle Scholar |
[5] W. Maruyama, P. Dostert, K. Matsubara, M. Naoi, Free Radic. Biol. Med. 1995, 19, 67.
| Crossref | GoogleScholarGoogle Scholar |
[6] C. Amatore, S. Arbault, D. Bruce, P. Oliveira, M. Erard, M. Vuillaume, Chem. – Eur. J. 2001, 7, 4171.
| Crossref | GoogleScholarGoogle Scholar |
[7] E. W. Miller, A. E. Albers, A. Pralle, E. Y. Isacoff, C. J. Chang, J. Am. Chem. Soc. 2005, 127, 16652.
| Crossref | GoogleScholarGoogle Scholar |
[8] N. V. Klassen, D. Marchington, H. C. E. McGowan, Anal. Chem. 1994, 66, 2921.
| Crossref | GoogleScholarGoogle Scholar |
[9] Y. Zhang, X. Bai, X. Wang, K. K. Shiu, Y. Zhu, H. Jiang, Anal. Chem. 2014, 86, 9459.
| Crossref | GoogleScholarGoogle Scholar |
[10] U. Pinkernell, S. Effkemann, U. Karst, Anal. Chem. 1997, 69, 3623.
| Crossref | GoogleScholarGoogle Scholar |
[11] H. Yang, R. Yang, P. Zhang, Y. Qin, T. Chen, F. Ye, Microchim. Acta 2017, 184, 4629.
| Crossref | GoogleScholarGoogle Scholar |
[12] B. C. Dickinson, C. J. Chang, J. Am. Chem. Soc. 2008, 130, 9638.
| Crossref | GoogleScholarGoogle Scholar |
[13] M. T. Jahanian, A. Akbarinejad, N. Alizadeh, Sens. Actuators B 2017, 240, 971.
| Crossref | GoogleScholarGoogle Scholar |
[14] J. Shanmugapriya, K. Rajaguru, G. Sivaraman, S. Muthusubramanian, N. Bhuvanesh, RSC Adv. 2016, 6, 85838.
| Crossref | GoogleScholarGoogle Scholar |
[15] G. J. Liu, Z. Long, H. Lv, C. Li, G. Xing, Chem. Commun. 2016, 52, 10233.
| Crossref | GoogleScholarGoogle Scholar |
[16] F. Zhan, Q. Yang, Q. Wang, Z. Zhuang, X. Feng, RSC Adv. 2016, 6, 89940.
| Crossref | GoogleScholarGoogle Scholar |
[17] N. Narayanaswamy, S. Narra, R. R. Nair, D. K. Saini, P. Kondaiah, T. Govindaraju, Chem. Sci. 2016, 7, 2832.
| Crossref | GoogleScholarGoogle Scholar |
[18] Y. Chen, X. Shi, Z. Lu, X. Wang, Z. Wang, Anal. Chem. 2017, 89, 5278.
| Crossref | GoogleScholarGoogle Scholar |
[19] Z. Han, X. Liang, X. Ren, L. Shang, Z. Yin, Chem. Asian J. 2016, 11, 818.
| Crossref | GoogleScholarGoogle Scholar |
[20] B. Tang, L. Zhang, K. Xu, Talanta 2006, 68, 876.
| Crossref | GoogleScholarGoogle Scholar |
[21] B. Y. Fang, C. Li, Y. Y. Song, F. Tan, Y. C. Cao, Y. D. Zhao, Biosens. Bioelectron. 2018, 100, 41.
| Crossref | GoogleScholarGoogle Scholar |
[22] H. Xu, Z. Wang, Y. Li, S. Ma, P. Hu, X. H. Zhong, Analyst 2013, 138, 2181.
| Crossref | GoogleScholarGoogle Scholar |
[23] D. Li, H. Xu, D. Li, Y. H. Wang, Talanta 2017, 166, 54.
| Crossref | GoogleScholarGoogle Scholar |
[24] X. Li, S. Zhang, S. A. Kulinich, Y. Liu, H. Zeng, Sci. Rep. 2014, 4, 4976.
| Crossref | GoogleScholarGoogle Scholar |
[25] Q. Niu, K. Gao, Z. Lin, W. Wu, Anal. Methods 2013, 5, 6228.
| Crossref | GoogleScholarGoogle Scholar |
[26] J. M. Liu, L. Lin, X. X. Wang, S. Q. Lin, W. L. Cai, L. H. Zhang, Analyst 2012, 137, 2637.
| Crossref | GoogleScholarGoogle Scholar |
[27] F. Wang, Z. Gu, W. Lei, W. Wang, X. Xia, Q. Hao, Sens. Actuators B 2014, 190, 516.
| Crossref | GoogleScholarGoogle Scholar |
[28] H. Zheng, R. Su, Z. Gao, W. Qi, R. Huang, L. Wang, Z. Hea, Anal. Methods 2014, 6, 6352.
| Crossref | GoogleScholarGoogle Scholar |
[29] X. Wu, F. Tian, W. Wang, J. Chen, M. Wub, J. X. Zhao, J. Mater. Chem. C 2013, 1, 4676.
| Crossref | GoogleScholarGoogle Scholar |
[30] Y. He, X. Wang, J. Sun, S. Jiao, H. Chen, F. Gao, L. Wang, Anal. Chim. Acta 2014, 810, 71.
| Crossref | GoogleScholarGoogle Scholar |
[31] O. Adegoke, S. Khene, T. Nyokong, J. Fluoresc. 2013, 23, 963.
| Crossref | GoogleScholarGoogle Scholar |
[32] G. Mao, Q. Cai, F. Wang, C. Luo, X. Ji, Z. He, Anal. Chem. 2017, 89, 11628.
| Crossref | GoogleScholarGoogle Scholar |
[33] T. Gong, J. Liu, Y. Wu, Y. Xiao, X. Wang, S. Yuan, Biosens. Bioelectron. 2017, 92, 16.
| Crossref | GoogleScholarGoogle Scholar |
[34] F. Du, Y. Min, F. Zeng, C. Yu, S. Wu, Small 2014, 10, 964.
| Crossref | GoogleScholarGoogle Scholar |
[35] L. Zhang, X. Hai, C. Xia, X. W. Chen, J. H. Wang, Sens. Actuators B 2017, 248, 374.
| Crossref | GoogleScholarGoogle Scholar |
[36] F. Zhao, J. Kim, Sci. Adv. Mater. 2016, 8, 64.
| Crossref | GoogleScholarGoogle Scholar |
[37] L. Wang, X. Kang, D. Pan, Inorg. Chem. 2017, 56, 6122.
| Crossref | GoogleScholarGoogle Scholar |
[38] S. Chen, M. Chi, Z. Yang, M. Gao, C. Wang, Inorg. Chem. Front. 2017, 4, 1621.
| Crossref | GoogleScholarGoogle Scholar |
[39] C. L. Shen, L. X. Su, J. H. Zang, X. J. Li, Q. Lou, C. X. Shan, Nanoscale Res. Lett. 2017, 12, 447.
| Crossref | GoogleScholarGoogle Scholar |
[40] E. M. Nolan, S. J. Lippard, Chem. Rev. 2008, 108, 3443.
| Crossref | GoogleScholarGoogle Scholar |
[41] H. Xu, D. Li, Y. Zhao, X. M. Wang, D. Li, Y. H. Wang, Luminescence 2018, 33, 410.
| Crossref | GoogleScholarGoogle Scholar |
[42] I. S. Liu, H. H. Lo, C. T. Chien, Y. Y. Lin, C. W. Chen, Y. F. Chen, S. C. Liou, J. Mater. Chem. 2008, 18, 675.
| Crossref | GoogleScholarGoogle Scholar |
[43] S. Chen, Langmuir 1999, 15, 7551.
| Crossref | GoogleScholarGoogle Scholar |
[44] J. Zhang, Y. Wei, L. Tian, X. Kang, RSC Adv. 2015, 5, 49031.
| Crossref | GoogleScholarGoogle Scholar |
[45] S. Chen, R. W. Murray, Langmuir 1999, 15, 682.
| Crossref | GoogleScholarGoogle Scholar |
[46] W. W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 2003, 15, 2854.
| Crossref | GoogleScholarGoogle Scholar |