Enhancement of Durability and Electrocatalytic Activity of Pt/C via CTAB-Modified Ultrathin Mesoporous Silica Coating for Methanol Oxidation
Guodong Xu A B and Bing Huang A BA Institute of New Energy on Chemical Storage and Power Sources, School of Chemistry and Environmental Engineering, Yancheng Teachers University, No. 2 Xiwang Avenue, Yancheng, 224007, Jiangsu Province, China.
B Corresponding authors. Email: xuguodong003@gmail.com; 18662063129@163.com
Australian Journal of Chemistry 71(11) 907-913 https://doi.org/10.1071/CH18356
Submitted: 25 July 2018 Accepted: 15 September 2018 Published: 5 October 2018
Abstract
An ultrathin mesoporous silica layer was directly coated onto Pt/C (Pt/C@mSiO2) using a cetyltrimethyl ammonium bromide (CTAB)-modified Stöber method without introducing an intermediate layer. The stability of the synthesised Pt/C@mSiO2 was evaluated by the accelerated potential cycling test (APCT). The electrochemically active surface area (ECSA) of the Pt/C@mSiO2 remained at 90 % while the ECSA of the Pt/C decreased to 51 % after APCT. Transmission electron microscopy images of the Pt/C and the Pt/C@mSiO2 before and after APCT suggest the silica coating effectively suppressed Pt aggregation. Furthermore, the Pt/C@mSiO2 exhibited higher electrocatalytic activity for methanol oxidation reaction than Pt/C.
References
[1] X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu, J. Liao, Energy Environ. Sci. 2011, 4, 2736.| Crossref | GoogleScholarGoogle Scholar |
[2] M. Ahmed, I. Dincer, Int. J. Energy Res. 2011, 35, 1213.
| Crossref | GoogleScholarGoogle Scholar |
[3] S. K. Kamarudin, F. Achmad, W. R. W. Daud, Int. J. Hydrogen Energy 2009, 34, 6902.
| Crossref | GoogleScholarGoogle Scholar |
[4] L. Ding, A. Wang, G. Li, Z. Liu, W. Zhao, C. Su, Y. Tong, J. Am. Chem. Soc. 2012, 134, 5730.
| Crossref | GoogleScholarGoogle Scholar |
[5] A. Wang, H. Xu, J. Feng, L. Ding, Y. Tong, G. Li, J. Am. Chem. Soc. 2013, 135, 10703.
| Crossref | GoogleScholarGoogle Scholar |
[6] L. Li, Y. Xing, J. Phys. Chem. C 2007, 111, 2803.
| Crossref | GoogleScholarGoogle Scholar |
[7] J. W. Guo, T. S. Zhao, J. Prabhuram, R. Chen, C. W. Wong, Electrochim. Acta 2005, 51, 754.
| Crossref | GoogleScholarGoogle Scholar |
[8] T. Iwasita, H. Hoster, A. John-Anacker, W. F. Lin, W. Vielstich, Langmuir 2000, 16, 522.
| Crossref | GoogleScholarGoogle Scholar |
[9] L. Ma, C. Liu, J. Liao, T. Lu, W. Xing, J. Zhang, Electrochim. Acta 2009, 54, 7274.
| Crossref | GoogleScholarGoogle Scholar |
[10] X. Yu, D. Wang, Q. Peng, Y. Li, Chem. – Eur. J. 2013, 19, 233.
| Crossref | GoogleScholarGoogle Scholar |
[11] G. A. Gruver, R. F. Pascoe, H. R. Kunz, J. Electrochem. Soc. 1980, 127, 1219.
| Crossref | GoogleScholarGoogle Scholar |
[12] A. C. C. Tseung, S. C. Dhara, Electrochim. Acta 1975, 20, 681.
| Crossref | GoogleScholarGoogle Scholar |
[13] E. Guilminot, A. Corcella, F. Charlot, F. Maillard, M. Chatenet, J. Electrochem. Soc. 2007, 154, B96.
| Crossref | GoogleScholarGoogle Scholar |
[14] A. Honji, T. Mori, K. Tamura, Y. Hishinuma, J. Electrochem. Soc. 1988, 135, 355.
| Crossref | GoogleScholarGoogle Scholar |
[15] Z. Cui, L. Feng, C. Liu, W. Xing, J. Power Sources 2011, 196, 2621.
| Crossref | GoogleScholarGoogle Scholar |
[16] R. F. B. De Souza, A. E. A. Flausino, D. C. Rascio, R. T. S. Oliveira, E. T. Neto, M. L. Calegaro, M. C. Santos, Appl. Catal. B 2009, 91, 516.
| Crossref | GoogleScholarGoogle Scholar |
[17] Y. Zhao, F. Wang, J. Tian, X. Yang, L. Zhan, Electrochim. Acta 2010, 55, 8998.
| Crossref | GoogleScholarGoogle Scholar |
[18] X. Yang, X. Wang, G. Zhang, J. Zheng, T. Wang, X. Liu, C. Shu, L. Jiang, C. Wang, Int. J. Hydrogen Energy 2012, 37, 11167.
| Crossref | GoogleScholarGoogle Scholar |
[19] Y. Zhao, X. Yang, J. Tian, F. Wang, L. Zhan, J. Power Sources 2010, 195, 4634.
| Crossref | GoogleScholarGoogle Scholar |
[20] S. Chen, Z. Wei, X. Qi, L. Dong, Y.-G. Guo, L. Wan, Z. Shao, L. Li, J. Am. Chem. Soc. 2012, 134, 13252.
| Crossref | GoogleScholarGoogle Scholar |
[21] C. Coutanceau, M. J. Croissant, T. Napporn, C. Lamy, Electrochim. Acta 2000, 46, 579.
| Crossref | GoogleScholarGoogle Scholar |
[22] C. Zhou, F. Peng, H. Wang, H. Yu, C. Peng, J. Yang, Electrochem. Commun. 2010, 12, 1210.
| Crossref | GoogleScholarGoogle Scholar |
[23] S. Takenaka, H. Matsumori, K. Nakagawa, H. Matsune, E. Tanabe, M. Kishida, J. Phys. Chem. C 2007, 111, 15133.
| Crossref | GoogleScholarGoogle Scholar |
[24] S. Takenaka, H. Matsumori, H. Matsune, E. Tanabe, M. Kishida, J. Electrochem. Soc. 2008, 155, B929.
| Crossref | GoogleScholarGoogle Scholar |
[25] W. Yaowarat, O. L. Li, N. Saito, RSC Adv. 2015, 5, 44258.
| Crossref | GoogleScholarGoogle Scholar |
[26] S. Takenaka, H. Miyamoto, Y. Utsunomiya, H. Matsune, M. Kishida, J. Phys. Chem. C 2014, 118, 774.
| Crossref | GoogleScholarGoogle Scholar |
[27] L. M. Liz-Marzán, M. Giersig, P. Mulvaney, Langmuir 1996, 12, 4329.
| Crossref | GoogleScholarGoogle Scholar |
[28] R. I. Nooney, T. Dhanasekaran, Y. Chen, R. Josephs, A. E. Ostafin, Adv. Mater. 2002, 14, 529.
| Crossref | GoogleScholarGoogle Scholar |
[29] M. Zhang, Y. Wu, X. Feng, X. He, L. Chen, Y. Zhang, J. Mater. Chem. 2010, 20, 5835.
| Crossref | GoogleScholarGoogle Scholar |
[30] Q. Cai, Z.-S. Luo, W.-Q. Pang, Y.-W. Fan, X.-H. Chen, F.-Z. Cui, Chem. Mater. 2001, 13, 258.
| Crossref | GoogleScholarGoogle Scholar |
[31] K.-J. Lin, L.-J. Chen, M. R. Prasad, C.-Y. Cheng, Adv. Mater. 2004, 16, 1845.
| Crossref | GoogleScholarGoogle Scholar |
[32] I. Gorelikov, N. Matsuura, Nano Lett. 2008, 8, 369.
| Crossref | GoogleScholarGoogle Scholar |
[33] S. H. Joo, J. Y. Park, C.-K. Tsung, Y. Yamada, P. Yang, G. A. Somorjai, Nat. Mater. 2009, 8, 126.
| Crossref | GoogleScholarGoogle Scholar |
[34] Z.-M. Cui, Z. Chen, C.-Y. Cao, W.-G. Song, L. Jiang, Chem. Commun. 2013, 6093.
| Crossref | GoogleScholarGoogle Scholar |
[35] L. Shang, T. Bian, B. Zhang, D. Zhang, L.-Z. Wu, C.-H. Tung, Y. Yin, T. Zhang, Angew. Chem. Int. Ed. 2014, 53, 250.
| Crossref | GoogleScholarGoogle Scholar |
[36] L. Wu, Z. Jiao, M. Wu, T. Song, H. Zhang, RSC Adv. 2016, 6, 13303.
| Crossref | GoogleScholarGoogle Scholar |
[37] E. Antolini, F. Cardellini, J. Alloys Compd. 2001, 315, 118.
| Crossref | GoogleScholarGoogle Scholar |
[38] S. Wardiyati, W. A. Adi, Deswita, IOP Conf. Ser. Mater. Sci. Eng. 2017, 202, 012059.
| Crossref | GoogleScholarGoogle Scholar |
[39] S. Musić, N. Filipović-Vinceković, L. Sekovanić, Braz. J. Chem. Eng. 2011, 28, 89.
| Crossref | GoogleScholarGoogle Scholar |
[40] S.-J. Ding, H.-B. Chen, X.-M. Cui, S. Chen, Q.-Q. Sun, P. Zhou, H.-L. Lu, D. W. Zhang, C. Shen, Nanoscale Res. Lett. 2013, 8, 80.
| Crossref | GoogleScholarGoogle Scholar |
[41] N. Resende, C. A. Perez, J.-G. Eon, M. Schmal, Catal. Lett. 2011, 141, 1685.
| Crossref | GoogleScholarGoogle Scholar |
[42] S. Takenaka, D. Mikami, E. Tanabe, H. Matsune, M. Kishida, Appl. Catal. A 2015, 492, 60.
| Crossref | GoogleScholarGoogle Scholar |
[43] S. Takenaka, T. Miyazaki, H. Matsune, M. Kishida, Catal. Sci. Technol. 2015, 5, 1133.
| Crossref | GoogleScholarGoogle Scholar |
[44] D. Zhao, B.-Q. Xu, Angew. Chem. Int. Ed. 2006, 45, 4955.
| Crossref | GoogleScholarGoogle Scholar |
[45] J.-H. Choi, K.-W. Park, I.-S. Park, K. Kim, J.-S. Lee, Y.-E. Sung, J. Electrochem. Soc. 2006, 153, A1812.
| Crossref | GoogleScholarGoogle Scholar |
[46] J. B. Xu, T. S. Zhao, W. W. Yang, S. Y. Shen, Int. J. Hydrogen Energy 2010, 35, 8699.
| Crossref | GoogleScholarGoogle Scholar |
[47] S. V. Selvaganesh, G. Selvarani, P. Sridhar, S. Pitchumani, A. K. Shukla, Phys. Chem. Chem. Phys. 2011, 13, 12623.
| Crossref | GoogleScholarGoogle Scholar |
[48] Z.-Z. Jiang, Z.-B. Wang, Y.-Y. Chu, D.-M. Gu, G.-P. Yin, Energy Environ. Sci. 2011, 4, 728.
| Crossref | GoogleScholarGoogle Scholar |