The Mixed Magnetic Property of Co0.76Cu0.74[Fe(CN)6]·7.5H2O
Yanfang Xia A B , Min Liu B C and Duxin Li A CA State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410006, China.
B College of Nuclear Science and Technology, University of South China, Hengyang 421001, China.
C Corresponding authors. Email: liuquanusc@126.com; liduxingx@sina.com
Australian Journal of Chemistry 71(11) 914-916 https://doi.org/10.1071/CH18290
Submitted: 14 June 2018 Accepted: 8 September 2018 Published: 15 October 2018
Abstract
Co0.76Cu0.74[Fe(CN)6]·7.5H2O was prepared as a powder by a chemical co-precipitation method. The powder X-ray diffraction patterns were indexed to the typical face-centred cubic structure with the lattice parameter a 10.55(2) Å. The temperature dependence of the χ−1 curve obeys the Curie–Weiss law (χ = C/(T – θ)) in the temperature range of 180–300 K. According to Curie–Weiss law, the calculated θ value is −54.82 K. In the paramagnetic state at 300 K, the effective magnetic moment (μeff = (8χT)1/2) is 3.58 μB per formula unit. The calculated theoretical effective magnetic moment is 4.06 μB. The magnetic field cooling measurements under a 200 Oe applied magnetic field show that the saturation magnetization value at 2 K of the complex Co0.76Cu0.74[Fe(CN)6]·7.5H2O is 1.528 emu g−1.
References
[1] O. Sato, T. Iyoda, A. Fujishima, K. Hashimoto, Science 1996, 272, 704.| Crossref | GoogleScholarGoogle Scholar |
[2] S. Benmansour, F. Setifi, S. Triki, F. Thétiot, J. Sala-Pala, C. J. Gómez-García, E. Colacio, Polyhedron 2009, 28, 1308.
| Crossref | GoogleScholarGoogle Scholar |
[3] J. Adamson, T. C. Lucas, A. B. Cairns, N. P. Funnell, M. G. Tucker, A. K. Kleppe, J. A. Hriljac, A. L. Goodwin, Physica B 2015, 479, 35.
| Crossref | GoogleScholarGoogle Scholar |
[4] M. Matiková-Mal’arová, J. Černák, W. Massa, F. Varret, J. Coord. Chem. 2010, 63, 954.
| Crossref | GoogleScholarGoogle Scholar |
[5] E. Albayrak, Physica B 2018, 531, 70.
| Crossref | GoogleScholarGoogle Scholar |
[6] A. Bleuzen, V. Marvaud, C. Mathonière, B. Sieklucka, M. Verdaguer, Inorg. Chem. 2009, 48, 3453.
| Crossref | GoogleScholarGoogle Scholar |
[7] V. Ksenofontov, G. Levchenko, S. Reiman, P. Gütlich, A. Bleuzen, V. Escax, M. Verdaguer, Phys. Rev. B Condens. Matter Mater. Phys. 2003, 68, 024415.
| Crossref | GoogleScholarGoogle Scholar |
[8] A. F. Sapnik, X. Liu, H. L. B. Bostrom, C. S. Coates, A. R. Overy, E. M. Reynolds, A. Tkatchenko, A. L. Goodwin, J. Solid State Chem. 2018, 258, 298.
| Crossref | GoogleScholarGoogle Scholar |
[9] M. Liu, M. Xu, J. Coord. Chem. 2012, 65, 4353.
| Crossref | GoogleScholarGoogle Scholar |
[10] A. Kumar, S. M. Yusuf, L. Keller, J. V. Yakhmi, J. K. Srivastava, P. L. Paulose, Phys. Rev. B Condens. Matter Mater. Phys. 2007, 75, 224419.
| Crossref | GoogleScholarGoogle Scholar |
[11] M. Liu, M. X. Xu, Inorg. Chem. Commun. 2012, 26, 24.
| Crossref | GoogleScholarGoogle Scholar |
[12] S. Ohkoshi, K. Hashimoto, J. Am. Chem. Soc. 1999, 121, 10591.
| Crossref | GoogleScholarGoogle Scholar |
[13] A. Kumar, S. M. Yusuf, L. Keller, J. V. Yakhmi, Phys. Rev. Lett. 2008, 101, 207206.
| Crossref | GoogleScholarGoogle Scholar |
[14] S. M. Yusuf, A. Kumar, J. V. Yakhmi, Appl. Phys. Lett. 2009, 95, 182506.
| Crossref | GoogleScholarGoogle Scholar |
[15] K. S. Murray, Aust. J. Chem. 2009, 62, 1081.
| Crossref | GoogleScholarGoogle Scholar |
[16] E. Chow, D. D. Liana, B. Raguse, J. J. Gooding, Aust. J. Chem. 2017, 70, 979.
[17] J. K. Zareba, J. Szeremeta, M. Waszkielewicz, M. Nyk, M. Samoc, Inorg. Chem. 2016, 55, 9501.
[18] P. Bhatt, A. Kumar, S. S. Meena, M. D. Mukadam, S. M. Yusuf, Chem. Phys. Lett. 2016, 651, 155.
| Crossref | GoogleScholarGoogle Scholar |
[19] E. Vatansever, Y. Yuksel, J. Alloys Compd. 2016, 689, 446.
| Crossref | GoogleScholarGoogle Scholar |
[20] L. Lartigue, S. Oh, E. Prouzet, Y. Guari, J. Larionova, Mater. Chem. Phys. 2012, 132, 438.
| Crossref | GoogleScholarGoogle Scholar |
[21] C. Gervais, M. A. Languille, S. Reguer, M. Gillet, E. P. Vicenzi, S. Chagnot, F. Baudelet, L. Bertrand, Appl. Phys. A 2013, 111, 15.
| Crossref | GoogleScholarGoogle Scholar |
[22] C. Gervais, M. Thoury, S. Reguer, P. Gueriau, J. Mass, Appl. Phys. A 2015, 121, 949.
| Crossref | GoogleScholarGoogle Scholar |
[23] R. Martinez-Garcia, M. Knobel, G. Goya, M. C. Gimenez, F. M. Romero, E. Reguera, J. Phys. Chem. Solids 2006, 672, 289.
[24] Y. D. Dai, H. B. Huang, J. Lin, Y. F. Hsia, Chin. Phys. 2004, 5, 746.