Co-Crystallisation of 1,4-Diiodotetrafluorobenzene with Three Different Symmetric Dipyridylacetylacetone Isomers Produces Four Halogen-Bonded Architectures*
Joshua J. Brown A , Aidan J. Brock A , Michael C. Pfrunder A , Julia P. Sarju B , Abigail Z. Perry B , Adrian C. Whitwood B , Duncan W. Bruce B , John C. McMurtrie C D and Jack K. Clegg A DA School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld 4072, Australia.
B Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
C School of Chemistry, Physics and Mechanical Engineering, Faculty of Science and Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia.
D Corresponding authors. Email: j.mcmurtrie@qut.edu.au; j.clegg@uq.edu.au
Australian Journal of Chemistry 70(5) 594-600 https://doi.org/10.1071/CH16673
Submitted: 1 December 2016 Accepted: 20 January 2017 Published: 13 February 2017
Abstract
The co-crystallisation behaviour of three symmetrical dipyridylacetylacetone ligands (1,3-di(2-pyridyl)-1,3-propanedione (o-bppdH), 1,3-di(3-pyridyl)-1,3-propanedione (m-bppdH), and 1,3-di(4-pyridyl)-1,3-propanedione (p-bppdH)), with the linear halogen-bond donor 1,4-diiodotetrafluorobenzene (1,4-DITFB) has been investigated. The reaction of these components under ambient conditions in a 1 : 1 stoichiometry produced four halogen-bonded assemblies ([o-bppdH·1,4-DITFB, [m-bppdH·1,4-DITFB], [2(m-bppdH)·1,4-DITFB], and [p-bppdH·1,4-DITFB]). The combination of multiple supramolecular interactions including halogen bonding, hydrogen bonding, and π-stacking produces a range of supramolecular architectures, including one-, two-, and three-dimensional motifs. The crystal structure of m-bppdH is also reported.
References
[1] (a) A. Mukherjee, S. Tothadi, G. R. Desiraju, Acc. Chem. Res. 2014, 47, 2514.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovVSjsL0%3D&md5=ef33e18d2a822588bf625cff42435f23CAS |
(b) R. Bishop, CrystEngComm 2015, 17, 7448.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, Chem. Rev. 2016, 116, 2478.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitVyhs74%3D&md5=939a8d9e7ceec9f3cc4087e3fbed4a3fCAS |
(b) D. W. Bruce, P. Metrangolo, F. Meyer, T. Pilati, C. Präsang, G. Resnati, G. Terraneo, S. G. Wainwright, A. C. Whitwood, Chem. – Eur. J. 2010, 16, 9511.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) A. D. Burrows, in Supramolecular Assembly via Hydrogen Bonds I (Eds D. Michael, P. Mingos) 2004, Vol. 108, pp. 55–96 (Springer: Heidelberg).
(b) B. Li, S. Q. Zang, L. Y. Wang, T. C. W. Mak, Coord. Chem. Rev. 2016, 308, 1.
| Crossref | GoogleScholarGoogle Scholar |
(c) I. Dance, M. Scudder, CrystEngComm 2009, 11, 2233.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) G. R. Desiraju, J. Am. Chem. Soc. 2013, 135, 9952.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFehu7g%3D&md5=8506ddd463d2d7b178aa6db43d0c27ddCAS |
(b) M. C. Pfrunder, A. S. Micallef, L. Rintoul, D. P. Arnold, K. J. P. Davy, J. McMurtrie, Cryst. Growth Des. 2012, 12, 714.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. C. Pfrunder, A. S. Micallef, L. Rintoul, D. P. Arnold, K. J. P. Davy, J. McMurtrie, Cryst. Growth Des. 2014, 14, 6041.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) E. Corradi, S. V. Meille, M. T. Messina, P. Metrangolo, G. Resnati, Angew. Chem. Int. Ed. 2000, 39, 1782.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2itrc%3D&md5=43574a7b57ed00e8b6046b4d1d8b9320CAS |
(b) R. B. Walsh, C. W. Padgett, P. Metrangolo, G. Resnati, T. W. Hanks, W. T. Pennington, Cryst. Growth Des. 2001, 1, 165.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. B. Aakeroey, T. K. Wijethunga, J. Desper, J. Mol. Struct. 2014, 1072, 20.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. B. Aakeroey, T. K. Wijethunga, J. Desper, C. Moore, J. Chem. Crystallogr. 2015, 45, 267.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. B. Aakeroey, T. K. Wijethunga, M. A. Haj, J. Desper, C. Moore, CrystEngComm 2014, 16, 7218.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) J. L. Syssa-Magale, K. Boubekeur, P. Palvadeau, A. Meerschaut, B. Schollhorn, CrystEngComm 2005, 7, 302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlOqsLk%3D&md5=2894a8f8178f8be8a35dfcd56bb8d43aCAS |
(b) V. Nemec, D. Cincic, CrystEngComm 2016, 18, 7425.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) M. T. Messina, P. Metrangolo, W. Panzeri, T. Pilati, G. Resnati, Tetrahedron 2001, 57, 8543.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntV2hu7Y%3D&md5=feff7a01644bcb3fc138182ce7cc9717CAS |
(b) R. B. Walsh, C. W. Padgett, P. Metrangolo, G. Resnati, T. W. Hanks, W. T. Pennington, Cryst. Growth Des. 2001, 1, 165.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) H. L. Nguyen, P. N. Horton, M. B. Hursthouse, A. C. Legon, D. W. Bruce, J. Am. Chem. Soc. 2004, 126, 16.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsFygtr4%3D&md5=529e519ba0a09c2de830f181e49dffbcCAS |
(b) D. W. Bruce, P. Metrangolo, F. Meyer, C. Prasang, G. Resnati, G. Terraneo, A. C. Whitwood, New J. Chem. 2008, 32, 477.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Präsang, H. L. Nguyen, P. N. Horton, A. C. Whitwood, D. W. Bruce, Chem. Commun. 2008, 6164.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) C. B. Aakeroey, M. Baldrighi, J. Desper, P. Metrangolo, G. Resnati, Chem. – Eur. J. 2013, 19, 16240.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Wms7fF&md5=539cc4a115cc12706a809c32681d2df9CAS |
(b) C. B. Aakeroey, K. Epa, S. Forbes, N. Schultheiss, J. Desper, Chem. – Eur. J. 2013, 19, 14998.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. B. Aakeroey, K. N. Epa, S. Forbes, J. Desper, CrystEngComm 2013, 15, 5946.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. B. Aakeroey, S. Panikkattu, P. D. Chopade, J. Desper, CrystEngComm 2013, 15, 3125.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) A. D. Burrows, M. F. Mahon, C. L. Renouf, C. Richardson, A. J. Warren, J. E. Warren, Dalton Trans. 2012, 41, 4153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjslegsbg%3D&md5=a0711e482a0e704ac3b24d5bbdc46a80CAS |
(b) L. Carlucci, G. Ciani, D. M. Proserpio, M. Visconti, CrystEngComm 2011, 13, 5891.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. J. Bray, J. K. Clegg, L. F. Lindoy, D. Schilter, Adv. Inorg. Chem. 2007, 59, 1.
(d) A. D. Burrows, C. G. Frost, M. F. Mahon, P. R. Raithby, C. L. Renouf, C. Richardson, A. J. Stevenson, Chem. Commun. 2010, 46, 5067.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) C. Merkens, C. Merkens, CrystEngComm 2013, 15, 8153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVyrtbrN&md5=de4dc644903f781a96adb1f1d620a136CAS |
(b) L. Carlucci, G. Ciani, S. Maggini, D. M. Proserpio, M. Visconti, Chem. - Eur. J. 2010, 16, 12328.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) J. K. Clegg, L. F. Lindoy, B. Moubaraki, K. S. Murray, J. C. McMurtrie, Dalton Trans. 2004, 2417.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlyrtrY%3D&md5=479fca89cc91a3ae36611757e63a2d9bCAS |
(b) J. K. Clegg, L. F. Lindoy, J. C. McMurtrie, D. Schilter, Dalton Trans. 2005, 857.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. K. Clegg, B. Antonioli, D. J. Bray, K. Gloe, K. Gloe, K. A. Jolliffe, O. Kataeva, G. V. Meehan, M. Wenzel, J. Incl. Phenom. Macromol. Chem. 2011, 71, 319.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. V. Soldatov, A. S. Zanina, G. D. Enright, C. I. Ratcliffe, J. A. Ripmeester, Cryst. Growth Des. 2003, 3, 1005.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. J. Bray, K. A. Jolliffe, L. F. Lindoy, J. C. McMurtrie, Tetrahedron 2007, 63, 1953.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=4b06744951e5db9160e97e445120839fCAS |
(b) N. P. Cowieson, D. Aragao, M. Clift, D. J. Ericsson, C. Gee, S. J. Harrop, N. Mudie, S. Panjikar, J. R. Price, A. Riboldi-Tunnicliffe, R. Williamson, T. Caradoc-Davies, J. Synchrotron Radiat. 2015, 22, 187.
| Crossref | GoogleScholarGoogle Scholar |
[14] CrysAlisPro 2015 (Agilent Technologies: Yarton, Oxfordshire, UK).
[15] W. Kabsch, J. Appl. Cryst. 1993, 26, 795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXptFeltw%3D%3D&md5=41fdf6dde8b26cd71d73ba3ebf3584cdCAS |
[16] APEX v2.1, SAINT v.7 and XPREP v.6.14 2003 (Bruker-Nonius: Madison, WI).
[17] G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=933d4ded754510f3d6dd59e45c48aab3CAS |
[18] G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3.
[19] G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
[20] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFSnsbg%3D&md5=152b232aadeaa73225d2029119611dc4CAS |