Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

New Heterodinuclear Zn/Ln (Ln = Gd, Tb, Er, Yb) Complexes of Hexadentate N,N′-Bis(3-alkoxy-2-hydroxybenzyl)cyclohexane-1,2-diamines: Synthesis and Structure*

Norman Kelly A , Kathleen Schnaars A , Kerstin Gloe A , Thomas Doert A , Jan J. Weigand A B and Karsten Gloe A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Food Chemistry, TU Dresden, D-01062 Dresden, Germany.

B Corresponding authors. Email: jan.weigand@tu-dresden.de; karsten.gloe@chemie.tu-dresden.de

Australian Journal of Chemistry 70(5) 601-607 https://doi.org/10.1071/CH16716
Submitted: 15 December 2016  Accepted: 24 January 2017   Published: 20 February 2017

Abstract

Two N,N′-bis(3-alkoxy-2-hydroxybenzyl)cyclohexane-1,2-diamine proligands, H2L1 (R = OCH3) and H2L2 (R = OC2H5), and five heterodinuclear ZnII/LnIII complexes, [Zn(L)(µ-CH3COO)Ln(NO3)2], containing [L1]2– and Gd3+, Tb3+, Er3+, or Yb3+ and [L2]2– and Yb3+ have been synthesised and structurally characterised. The complexes are isostructural and crystallise in the P21/n monoclinic space group. Zinc(ii) is coordinated by the inner N2O2 donor set of the ligand and an oxygen of the bridging acetate anion; the lanthanide(iii) ions possess an O9 coordination environment involving the interaction with the ligand’s outer O4 donor set, two bidentate nitrate ions, and the bridging acetate.


References

[1]  M. Sakamoto, K. Manseki, H. Okawa, Coord. Chem. Rev. 2001, 219–221, 379.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  U. Casellato, S. Tamburini, P. Tomasin, P. A. Vigato, Inorg. Chim. Acta 2004, 357, 4191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvVemt78%3D&md5=feb45ad0bcd191712d97a5ab84b70c37CAS |

[3]  P. A. Vigato, S. Tamburini, L. Bertolo, Coord. Chem. Rev. 2007, 251, 1311.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFOrt7g%3D&md5=ed0ea75be9c218d9cb238b8812aa851bCAS |

[4]  P. A. Vigato, S. Tamburini, Coord. Chem. Rev. 2008, 252, 1871.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVagtbvF&md5=c82860abd24405a4e79d26dd496153cfCAS |

[5]  P. A. Vigato, V. Peruzzo, S. Tamburini, Coord. Chem. Rev. 2012, 256, 953.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVGlur0%3D&md5=40937b81f6ad7dc500ee27063f4cfa33CAS |

[6]  M. Andruh, Dalton Trans. 2015, 44, 16633.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht12ktrnN&md5=7bb314c2b9addc2cde0b3eed281ce8cbCAS |

[7]  B. Cristovao, J. Klak, B. Miroslaw, L. Mazur, Inorg. Chim. Acta 2011, 378, 288.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlygt73K&md5=4d4df859bf697a12784fe0db863a4b2bCAS |

[8]  K. Liu, W. Shi, P. Cheng, Coord. Chem. Rev. 2015, 289–290, 74.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  J.-P. Costes, F. Dohan, J. Garcia-Tojal, Chem. – Eur. J. 2002, 8, 5430.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xps1Wjsrc%3D&md5=d06a19c02e06ed0fdab1b504ed463deaCAS |

[10]  C. G. Novitchi, S. Shova, A. Caneschi, J.-P. Costes, M. Gdaniec, N. Stanica, Dalton Trans. 2004, 1194.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislCrtr8%3D&md5=c4e21cd417c398f7e85b5c8b4c7125e1CAS |

[11]  A. Jana, S. Majumder, L. Carrella, M. Nayak, T. Weyhermueller, S. Dutta, D. Schollmeyer, E. Rentschler, R. Koner, S. Mohanta, Inorg. Chem. 2010, 49, 9012.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSlsL7E&md5=125472d0731e67727acecca14fbca106CAS |

[12]  R. Koner, G.-H. Lee, Y. Wang, H. H. Wie, S. Mohanta, Eur. J. Inorg. Chem. 2005, 1500.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVCmsb4%3D&md5=602bfd144c536da65fa02d86fa42bf92CAS |

[13]  F. Cimpoesu, F. Dahan, S. Ladeira, M. Ferniteanu, J.-P. Costes, Inorg. Chem. 2012, 51, 11279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1Omsb4%3D&md5=a24d0d32026e7e0f16d685225ec2d597CAS |

[14]  F.-F. Chen, Z.-Q. Chen, Z.-Q. Chen, Z.-Q. Bian, C.-H. Huang, Coord. Chem. Rev. 2010, 254, 991.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivVyjsrY%3D&md5=0dd43131110de53b2624dbf829d75981CAS |

[15]  W.-Y. Bi, X.-Q. Lu, W.-L. Chai, J.-R. Song, W.-Y. Wong, W.-K. Wong, R. A. Jones, J. Mol. Struct. 2008, 891, 450.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOhsbvI&md5=128f60d5263565139929c6659432baadCAS |

[16]  Z.-L. You, Y. Lu, N. Zhang, B.-W. Ding, H. Sun, P. Hou, C. Wang, Polyhedron 2011, 30, 2186.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvV2jtbc%3D&md5=2106f6bd11e9dd1989206aa6b4f4589bCAS |

[17]  M. T. Kaczmarek, R. Jastrza, B. E. Hołderna-Kedzia, W. Radecka-Paryzek, Inorg. Chim. Acta 2009, 362, 3127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlOrtLs%3D&md5=e6abd8ea88bbacae206eae52dead8560CAS |

[18]  M. Fleck, D. Karmakar, M. Ghosh, A. Ghosh, R. Saha, D. Bandyopadhyay, Polyhedron 2012, 34, 157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1Sit7s%3D&md5=5273c8a9770f47d6ea73b1b231566253CAS |

[19]  P. G. Cozzi, Chem. Soc. Rev. 2004, 33, 410.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlWmtLc%3D&md5=f00f65f3e87023261363dadde0ac2d20CAS |

[20]  A. Thevenon, J. A. Garden, A. J. P. White, C. K. Williams, Inorg. Chem. 2015, 54, 11906.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVSgurfF&md5=abb9ed30583a6d2d331b24f7cffee95eCAS |

[21]  E. C. Constable, G. Zhang, C. E. Housecroft, M. Neuburger, S. Schaffer, CrystEngComm 2009, 11, 657.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVyrtbc%3D&md5=99f6d36ce6cefcf9e063c6027daa431cCAS |

[22]  N. Kelly, K. Schnaars, T. Doert, F. Hennersdorf, A. Heine, F. Taube, M. Acker, K. Gloe, K. Gloe, J. J. Weigand, in Proceedings from ISEC 2014 (electronic version) 2014, pp. 752–758.

[23]  P. P. Chakrabarty, S. Saha, K. Sen, A. D. Jana, D. Dey, D. Schollmeyer, S. Garcia-Granda, RSC Adv. 2014, 4, 40794.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlOjtr7I&md5=b33dd49672d94ca09926a041351b996bCAS |

[24]  W.-K. Lo, W.-K. Wong, J. Guo, W.-Y. Wong, K.-F. Li, K.-W. Cheah, Inorg. Chim. Acta 2004, 357, 4510.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWjurfF&md5=dee484b0479489bf6943f06b97bb3d3aCAS |

[25]  X.-P. Yang, R. A. Jones, Q.-Y. Wu, M. M. Oye, W.-K. Lo, W.-K. Wong, A. I. Holmes, Polyhedron 2006, 25, 271.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFyisA%3D%3D&md5=8d9e52cfea3c7e22b6f8a7aad1e1d79dCAS |

[26]  W.-Y. Bi, X.-Q. Lu, W.-L. Chai, W.-J. Jin, J.-R. Song, W.-K. Wong, Inorg. Chem. Commun. 2008, 11, 1316.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGisr3N&md5=4ab74a1d742b310433cd373ea957bb67CAS |

[27]  J. Long, R. Vallat, R. A. S. Ferreira, L. D. Carlos, F. A. Almeida Paz, Y. Guari, J. Larionova, Chem. Commun. 2012, 48, 9974.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlCjsrfM&md5=4f1f7b9b4a6b27e6855aac1eb78c8d7aCAS |

[28]  Y. Zhang, W. Feng, H. Liu, Z. Zhang, X. Lü, J. Song, D. Fan, W. K. Wong, R. A. Jones, Inorg. Chem. Commun. 2012, 24, 148.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  X. Yang, D. Schipper, A. Liao, J. M. Stanley, R. A. Jones, B. J. Holliday, Polyhedron 2013, 52, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1KjsbjO&md5=f460614c7dc775811a38c98b165c524dCAS |

[30]  E. C. Constable, G. Zhang, C. E. Housecroft, M. Neuburger, S. Schaffner, W.-D. Woggon, New J. Chem. 2009, 33, 1064.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFClsrc%3D&md5=274eac03bfa1ce458ff05d52daa8fb7cCAS |

[31]  E. C. Constable, G. Zhang, C. E. Housecroft, M. Neuburger, S. Schaffner, W.-D. Woggon, J. A. Zampese, New J. Chem. 2009, 33, 2166.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Whsr7J&md5=0cb4087d5f8dd71d4445e799a8ae0a22CAS |

[32]  N. H. Khan, E. A. Prasetyanto, Y. Kim, M. B. Ansari, S.-E. Park, Catal. Lett. 2010, 140, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFaltb%2FI&md5=1345350fccfb2e73e5d026bc87f95c57CAS |

[33]  G. Zhang, Org. Biomol. Chem. 2012, 10, 2534.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFKls7Y%3D&md5=819c99ea0c9b8d0695bc81c0b0a54ebfCAS |

[34]  E. Sergeeva, K. Press, I. Goldberg, M. Kol, Eur. J. Inorg. Chem. 2013, 3362.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvFWhu78%3D&md5=bca5b5fcf724b36a05eff478b8b4b792CAS |

[35]  P. Adao, S. Barroso, F. Avecilla, M. C. Oliveira, J. Organomet. Chem. 2014, 760, 212.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWmu77J&md5=d4537be6b3da6e46716f7f218efeffe7CAS |

[36]  G. Zhang, Inorg. Chem. Commun. 2014, 40, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  W.-K. Dong, J.-C. Ma, L.-C. Zhu, Y.-X. Sun, S. F. Akogun, Y. Zhang, Cryst. Growth Des. 2016, 16, 6903.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1yks7fJ&md5=c9a6782d544a1fe52414dbe813a06cc6CAS |

[38]  H.-T. Xia, Y.-F. Liu, S.-P. Yang, D.-Q. Wang, Acta Crystallogr. Sect. E 2006, E62, o5864.

[39]  H.-T. Xia, Y.-F. Liu, S.-P. Yang, D.-Q. Wang, Acta Crystallogr. Sect. E 2007, E63, o239.

[40]  Y.-F. Liu, H.-T. Xia, S.-P. Yang, D.-Q. Wang, Acta Crystallogr. Sect. E 2007, E63, o3562.

[41]  A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVeitb8%3D&md5=3b734f99c0280ab7dfc3588a90c2f2daCAS |

[42]  Q. Shi, X. Yang, X. Zhang, X. Li, J. Yang, X. Lü, Inorg. Chem. Commun. 2016, 73,
         | Crossref | GoogleScholarGoogle Scholar |

[43]  T. Gao, L.-L. Xu, Q. Zhang, G.-M. Li, P.-F. Yan, Inorg. Chem. Commun. 2012, 26, 60.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1KqsL3N&md5=ebe9aeb68ab7d75a925cf778724acff3CAS |

[44]  T. D. Pasatoiu, C. Tiseanu, A. M. Madalan, B. Jurca, C. Duhayon, J. P. Sutter, M. Andruh, Inorg. Chem. 2011, 50, 5879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFOjsLw%3D&md5=90f2b88f6432ca94b6b014daf8fe35edCAS |

[45]  L. G. Armstrong, H. C. Lip, L. F. Lindoy, M. McPartlin, P. A. Tasker, J. Chem. Soc., Dalton Trans. 1977, 1771.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhvVSluro%3D&md5=bcd3a195378c7acb97da7f7cb58488c4CAS |

[46]  Apex Suite (V. 2014.4) 2014 (Bruker AXS Inc.: Madison, WI).

[47]  G. M. Sheldrick, SADABS: Bruker AXS Area Detector Scaling and Absorption Correction 2008 (University of Göttingen: Göttingen).

[48]  G. M. Sheldrick, SHELXS-97: Program for the Solution of Crystal Structures 1997 (University of Göttingen: Göttingen).

[49]  G. M. Sheldrick, SHELXL: Program for the Refinement of Crystal Structures 2013 (University of Göttingen: Göttingen).

[50]  C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst. 2011, 44, 1281.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  L. J. Farrugia, J. Appl. Cryst. 1997, 30, 565.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1KgsLg%3D&md5=afe63b4b63485dfd2f09b284de26e9d3CAS |