Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Nitrosonium-Mediated Phenol–Arene Cross-Coupling Involving Direct C–H Activation

Anna Eisenhofer A , Uta Wille B C and Burkhard König A C
+ Author Affiliations
- Author Affiliations

A Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, D-93040 Regensburg, Germany.

B School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, Vic. 3010, Australia.

C Corresponding authors. Email: uwille@unimelb.edu.au; burkhard.koenig@ur.de

Australian Journal of Chemistry 70(4) 407-412 https://doi.org/10.1071/CH16622
Submitted: 3 November 2016  Accepted: 15 December 2016   Published: 6 February 2017

Abstract

The nitrosonium ion (NO+) is a highly versatile nitration and nitrosation reagent, as well as a strong one-electron oxidant. Herein, we describe an environmentally benign and mild method for the in situ formation of NO+ from readily available inorganic nitrate salts, i.e. lithium nitrate, through a finely tuned interplay between formic acid and MeOH, which are used as the solvent system. This methodology was applied to the NO+-induced oxidative C–H activation of methoxy-substituted phenols, which are versatile lignin-derived aromatic feedstocks, to achieve C–C cross-coupling reactions with arenes. The regeneration of NO+ by atmospheric molecular oxygen enables substoichiometric use of the nitrate.


References

[1]  J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, B. M. Weckhuysen, Chem. Rev. 2010, 110, 3552.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVyjsrw%3D&md5=56f22a04d04841ead2862bcbaa71f101CAS |

[2]  U. Wille, Chem. – Eur. J. 2002, 8, 340.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVyjurk%3D&md5=df28247e2db739051f15b0ef46f1dd15CAS |

[3]  E. Baciocchi, T. D. Giacco, S. M. Murgia, G. V. Sebastiani, J. Chem. Soc., Chem. Commun. 1987, 1246.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsV2rtrY%3D&md5=6f8edee302e1d3b69dd03e489caa796dCAS |

[4]  T. Shono, M. Chuankamnerdkarn, H. Maekawa, M. Ishifune, S. Kashimura, Synthesis 1994, 895.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpt1SgsA%3D%3D&md5=67a0c364a21069be027e16488ef613d6CAS |

[5]  (a) R. P. Wayne, I. Barnes, P. Biggs, J. P. Burrows, C. E. Canosa-Mas, J. Hjorth, G. Le Bras, G. K. Moortgat, D. Perner, G. Poulet, G. Restelli, H. Sidebottom, Atmos. Environ. Part A 1991, 25, 1.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) L. F. Gamon, J. M. White, U. Wille, Org. Biomol. Chem. 2014, 12, 8280.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  D. C. E. Sigmund, U. Wille, Chem. Commun. 2008, 2121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyntb8%3D&md5=742a58c0bd021b0e577c454860845aa3CAS |

[7]  (a) T. Hering, T. Slanina, A. Hancock, U. Wille, B. König, Chem. Commun. 2015, 51, 6568.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkt1Ontb4%3D&md5=c81a08aae901b49d4a0df1d4bb0ab080CAS |
      (b) N. A. Romero, D. A. Nicewicz, J. Am. Chem. Soc. 2014, 136, 17024.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  A. Lauraguais, A. El Zein, C. Coeur, E. Obeid, A. Cassez, M.-T. Rayez, J.-C. Rayez, J. Phys. Chem. A 2016, 120, 2691.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmtVahs78%3D&md5=71be359c74ff93013ca8283617dd538cCAS |

[9]  (a) W. P. L. Carter, A. M. Winer, J. N. Pitts, Environ. Sci. Technol. 1981, 15, 829.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlt1Shs74%3D&md5=fc4254e65d1dfda80a33cc1a75153f18CAS |
      (b) R. Atkinson, S. M. Aschmann, J. Arey, Environ. Sci. Technol. 1992, 26, 1397.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. I. Olariu, I. Barnes, I. Bejan, C. Arsene, D. Vione, B. Klotz, K. H. Becker, Environ. Sci. Technol. 2013, 47, 7729.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) A. Kirste, G. Schnakenburg, F. Stecker, A. Fischer, S. R. Waldvogel, Angew. Chem. Int. Ed. 2010, 49, 971.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGmtrc%3D&md5=33a99d356f947a6767659b9ab2ed46deCAS |
      (b) A. Kirste, B. Elsler, G. Schnakenburg, S. R. Waldvogel, J. Am. Chem. Soc. 2012, 134, 3571.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. Elsler, A. Wiebe, D. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel, Chem. – Eur. J. 2015, 21, 12321.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) E. Gaster, Y. Vainer, A. Regev, S. Narute, K. Sudheendran, A. Werbeloff, H. Shalit, D. Pappo, Angew. Chem. Int. Ed. 2015, 54, 4198.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvVeqtbc%3D&md5=7b2426d546bccc40191d706daadbba45CAS |
      (b) A. Dyadyuk, K. Sudheendran, Y. Vainer, V. Vershinin, A. I. Shames, D. Pappo, Org. Lett. 2016, 18, 4324.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) Selected reviews on oxidative aromatic (cross-)coupling reactions: (a) H. Musso, Angew. Chem. Int. Ed. Engl. 1963, 2, 723.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. Grzybowski, K. Skonieczny, H. Butenschön, D. T. Gryko, Angew. Chem. Int. Ed. 2013, 52, 9900.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Kita, T. Dohi, K. Morimoto, J. Synth. Org. Chem. Jpn. 2011, 69, 1241.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. A. Ashenhurst, Chem. Soc. Rev. 2010, 39, 540.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) G. P. McGlacken, L. M. Bateman, Chem. Soc. Rev. 2009, 38, 2447.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) From thermodynamic considerations the excited state of acridinium catalyst 1 can be reductively quenched by activated arenes and phenols and thus an alternative mechanism without the involvement of NO3 is possible. However, Table 1 excludes the reductive quenching by activated arenes as an efficient pathway: (a) N. A. Romero, K. A. Margrey, N. E. Tay, D. A. Nicewicz, Science 2015, 349, 1326.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsV2gtLjL&md5=e188e787fe045a00b3487dd58e59ec3eCAS |
      (b) K. Ohkubo, K. Mizushima, R. Iwata, S. Fukuzumi, Chem. Sci. 2011, 2, 715.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  The potentials were determined by cyclic voltammetry (CV); see Supplementary Material for details.

[15]  (a) L. Eberson, M. P. Hartshorn, O. Persson, J. Chem. Soc., Perkin Trans. 2 1995, 1735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotVersL4%3D&md5=ea843f39ab9d776a8b65e07cbd0078d0CAS |
      (b) L. Eberson, O. Persson, M. P. Hartshorn, Angew. Chem. Int. Ed. Engl. 1995, 34, 2268.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Eberson, M. P. Hartshorn, O. Persson, F. Radner, Chem. Commun. 1996, 2105.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. Berkessel, J. A. Adrio, D. Hüttenhain, J. M. Neudörfl, J. Am. Chem. Soc. 2006, 128, 8421.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) T. Dohi, N. Yamaoka, Y. Kita, Tetrahedron 2010, 66, 5775.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) T. Kashiwagi, B. Elsler, S. R. Waldvogel, T. Fuchigami, M. Atobe, J. Electrochem. Soc. 2013, 160, G3058.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFKlsrjK&md5=3cbdf544b40d239576ca61a25138acc4CAS |
      (b) B. Elsler, D. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel, Angew. Chem. Int. Ed. 2014, 53, 5210.

[17]  J. S. Morgan, J. Chem. Soc. Trans. 1916, 109, 274.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaC28Xns1Oi&md5=a2b10a69ea19915222c31ef74238501eCAS |

[18]  (a) P. Gray, A. D. Yoffe, Chem. Rev. 1955, 55, 1069.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XjtFequg%3D%3D&md5=e441ed3ceebf0af59172f089ef74ac37CAS |
      (b) M. Qureshi, W. Husain, J. P. Rawat, Anal. Chem. 1963, 35, 1592.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. J. G. Raw, J. Frierdich, F. Perrino, G. Jex, J. Phys. Chem. 1978, 82, 1952.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. C. Fanning, Coord. Chem. Rev. 2000, 199, 159.and references therein.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Shiri, M. A. Zolfigol, H. G. Kruger, Z. Tanbakouchian, Tetrahedron 2010, 66, 9077.
         | Crossref | GoogleScholarGoogle Scholar |
         (f) The role of MeOH is assumed either to increase solubility of NO2 and the dimer N2O4 or as mediator by the reaction with NO2/N2O4 to methyl nitrite, which can act as a source of NO+ under acidic conditions:Yoffe  A. D.Gray  P.1951 J. Chem. Soc.1412

[19]  (a) L. Eberson, F. Radner, Acc. Chem. Res. 1987, 20, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtVWntL4%3D&md5=238606375889739ef1daffa2f0adcad4CAS |
      (b) E. K. Kim, J. K. Kochi, J. Am. Chem. Soc. 1991, 113, 4962.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. H. Ridd, D. Pletcher, X. Qiao, J. R. A. Pascal, A. J. Bard, G. W. Francis, J. Szúnyog, B. Långström, Acta Chem. Scand. 1998, 52, 11.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) G. I. Borodkin, V. G. Shubin, Russ. Chem. Rev. 2001, 70, 211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVShsb4%3D&md5=5431dd6fb6ab93cf66167e183fda450eCAS |
      (b) E. Bosch, J. K. Kochi, J. Org. Chem. 1994, 59, 3314.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. Bosch, J. K. Kochi, J. Org. Chem. 1994, 59, 5573.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  (a) F. Radner, J. Org. Chem. 1988, 53, 702.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhs1Ojurk%3D&md5=43ffaba543aef7cba3da8b7e9c6663e2CAS |
      (b) M. Tanaka, H. Nakashima, M. Fujiwara, H. Ando, Y. Souma, J. Org. Chem. 1996, 61, 788.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  (a) B. Su, L. Li, Y. Hu, Y. Liu, Q. Wang, Adv. Synth. Catal. 2012, 354, 383.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVKjt7k%3D&md5=172d527700d7014031c78c504fc12250CAS |
      (b) B. Su, M. Deng, Q. Wang, Org. Lett. 2013, 15, 1606.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  It cannot be excluded that the initial oxidation is initiated by NO2. However, NO2 is a considerably weaker oxidant (Ered (NO2/NO2) = 0.45–0.78 V versus SCE)[5b,19c] compared to NO+.

[24]  E. K. Kim, J. K. Kochi, J. Org. Chem. 1989, 54, 1692.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsFersrY%3D&md5=94f5dd80767c47f85c1e9f936a814af4CAS |

[25]  Tanaka et al.[21b] explained the high preference for C–C bond formation for the NOBF4-catalyzed homocoupling of naphthalene derivatives due to the addition of superacids, which are reported to inhibit nitration. We hypothesized that formic acid prevents nitrosation and nitration through a similar mechanism.

[26]  Gowenlock et al. observed an intense green colour upon treatment of 1,3-dimethoxybenzene 3b with the equilibrium mixture NO2/N2O4 in dichloromethane. The colour was assigned to a nitrosation reaction and subsequent oxidation: B. G. Gowenlock, B. King, J. Pfab, J. Chem. Res. 2000, 2000, 276. Treatment of 3b with formic acid/MeOH (9 : 1), LiNO3 (0.5 equiv.) (method B) results in an intense emerald green colour, which implies the formation of traces of nitrosation products and gives indirect evidence to the formation of NO2/N2O4 and the ionic NO+NO3.

[27]  The cross-coupling can also be initiated by the oxidation of arene b and subsequent trapping with the phenol component a as indicated by the formation of the cross-coupling product bb.

[28]  V. V. Pavlishchuk, A. W. Addison, Inorg. Chim. Acta 2000, 298, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt12gsrY%3D&md5=4a50fb8b8e7de33840c657942ae09a8aCAS |