Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Hydroxyl Radicals via Collision-Induced Dissociation of Trimethylammonium Benzyl Alcohols

Peter W. Moore A , Jordan P. Hooker A , Athanasios Zavras B , George N. Khairallah B C , Elizabeth H. Krenske A , Paul V. Bernhardt A , Gina Quach A , Evan G. Moore A , Richard A. J. O’Hair B D and Craig M. Williams A D
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld 4072, Australia.

B School of Chemistry, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Vic. 3010, Australia.

C Accurate Mass Scientific P/L, Keilor, Vic. 3036, Australia.

D Corresponding authors. Email: rohair@unimelb.edu.au; c.williams3@uq.edu.au

Australian Journal of Chemistry 70(4) 397-406 https://doi.org/10.1071/CH16602
Submitted: 25 October 2016  Accepted: 26 November 2016   Published: 9 January 2017

Abstract

The hydroxyl radical is a well known reactive oxygen species important for interstellar, atmospheric, and combustion chemistry in addition to multiple biochemical processes. Although there are many methods to generate the hydroxyl radical, most of these are inorganic based, with only a few originating from organic precursor molecules. Reported herein is the observation that trimethylammonium benzyl alcohols and their corresponding deuterated isotopologues act as a good source of hydroxyl and deuteroxyl radicals in the gas-phase under collision-induced dissociation (CID) conditions. Attempts to replicate this chemistry in the condensed phase are described.


References

[1]  S. Gligorovski, R. Strekowski, S. Barbati, D. Vione, Chem. Rev. 2015, 115, 13051.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFGns77L&md5=106a01835f63780e75873e7f8e3f7e3cCAS |

[2]  N. H. Dieter, H. I. Ewen, Nature 1964, 201, 279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXnt1KmtA%3D%3D&md5=7cbcff8b0f15f5aa1cb29ffb648a2d20CAS |

[3]  J. W. V. Storey, D. M. Watson, C. H. Townes, Astrophys. J. 1981, 244, L27.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhs1Gnsr0%3D&md5=af2010df0b5860f2431d18ec19489599CAS |

[4]  A. L. Argon, M. J. Reid, K. M. Menten, Astrophys. J. 2003, 593, 925.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVyhs7w%3D&md5=588803b479169e7cd56d280ffe242e5cCAS |

[5]  C. N. Hewitt, R. M. Harrison, Atmos. Environ. 1985, 19, 545.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkt1GjtLg%3D&md5=88d22fbd0e76f7db49953a83004fc90aCAS |

[6]  A. A. Fokin, P. R. Schreiner, Chem. Rev. 2002, 102, 1551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVGnsrY%3D&md5=8a845b6f8d0e78305e1a0040a7e46f27CAS |

[7]  See, for example, S.-x. Chen, P. Schopfer, Eur. J. Biochem. 1999, 260, 726.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1Ontb8%3D&md5=db5941e04618622b66340d67f5c71467CAS |

[8]  B. Lipinski, Oxid. Med. Cell. Longev. 2011, 2011, 809696.

[9]  S. J. Blanksby, G. B. Ellison, Acc. Chem. Res. 2003, 36, 255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1OqsA%3D%3D&md5=f56007c67b8e43456dac63818e15bb03CAS |

[10]     (a) J. Sanchez, T. N. Myers, Peroxides and Peroxide Compounds, Organic Peroxides, in Kirk-Othmer Encyclopedia of Chemical Technology 2000 (John Wiley: Hoboken, NJ).
      (b) S. Hsieh, R. Vushe, Y. T. Tun, J. L. Vallejo, Chem. Phys. Lett. 2014, 591, 99.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) R. Gutbrod, R. N. Schindler, E. Kraka, D. Cremer, Chem. Phys. Lett. 1996, 252, 221.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivV2rs78%3D&md5=b78a0cd1a8ff31cff3fd45abacddbabeCAS |
      (b) S. M. Aschmann, J. Arey, R. Atkinson, Atmos. Environ. 2002, 36, 4347.and references therein.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. Atkinson, Atmos. Chem. Phys. 2003, 3, 2233.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) M. B. Prendergast, P. A. Cooper, B. B. Kirk, G. da Silva, S. J. Blanksby, A. J. Trevitt, Phys. Chem. Chem. Phys. 2013, 15, 20577.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslOmtr%2FP&md5=7fe80c8cf38fcf6340b15f8fa4e03c63CAS |
      (b) For a related process see: M. B. Prendergast, B. B. Kirk, J. D. Savee, D. L. Osborn, C. A. Taatjes, K.-S. Masters, S. J. Blanksby, G. da Silva, A. J. Trevitt, Phys. Chem. Chem. Phys. 2016, 18, 4320.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  J. Boivin, E. Crépon, S. Z. Zard, Tetrahedron Lett. 1990, 31, 6869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtVWltLw%3D&md5=107a486a6f6f2103782b37f965094e22CAS |

[14]  (a) D. H. R. Barton, D. Crich, W. B. Motherwell, J. Chem. Soc., Chem. Commun. 1983, 939.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtVeksb4%3D&md5=18b7406b341741f74ee52d5b3d2cf968CAS |
      (b) D. H. R. Barton, D. Crich, W. B. Motherwell, Tetrahedron 1985, 41, 3901.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. H. R. Barton, M. Samadi, Tetrahedron 1992, 48, 7083.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) E. J. Ko, G. P. Savage, C. M. Williams, J. Tsanaktsidis, Org. Lett. 2011, 13, 1944.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) J. Ho, J. Zheng, R. Meana-Pañeda, D. G. Truhlar, E. J. Ko, G. P. Savage, C. M. Williams, M. L. Coote, J. Tsanaktsidis, J. Org. Chem. 2013, 78, 6677.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) E. J. Ko, C. M. Williams, G. P. Savage, J. Tsanaktsidis, Org. Synth. 2012, 89, 471.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) K. M. Hess, T. A. Dix, Anal. Biochem. 1992, 206, 309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsVKktrg%3D&md5=99c87b9f971f85ed5fb639d5d64b0c1aCAS |
      (b) B. Epe, D. Ballmaier, W. Adam, G. N. Grimm, C. R. Saha-Möller, Nucleic Acids Res. 1996, 24, 1625.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. Adam, G. N. Grimm, S. Marquardt, C. R. Saha-Möller, J. Am. Chem. Soc. 1999, 121, 1179.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  S. Beranová, C. Wesdemiotis, Int. J. Mass Spectrom. Ion Process. 1994, 134, 83.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  A. G. Harrison, J. Mass Spectrom. 1999, 34, 1253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1amug%3D%3D&md5=b8278ca323e946932cd986c4234f1884CAS |

[18]  If a more labile radical fragmenation pathway is available, the NR3 moiety remains intact as a phenyl substituent. See for example: B. B. Kirk, A. J. Trevitt, S. J. Blanksby, J. Am. Soc. Mass Spectrom. 2013, 24, 481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXls1eisb0%3D&md5=51d1b65aff201e9c96c57d3541ec8f69CAS |

[19]  D. Kuck, S. Heitkamp, J. Spross, M. C. Letzel, I. Ahmed, K. Krohn, R. G. Parker, Y. L. Wang, V. J. Robbins, W. M. Ames, P. D. Schettler, R. R. Hark, Int. J. Mass Spectrom. 2015, 377, 23.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1SjsL3I&md5=5e3229eca78bbe64b4160f44ad97c369CAS |

[20]  P. J. Derrick, Mass Spectrom. Rev. 1983, 2, 285.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXks12ksbc%3D&md5=0ad3fae878ea28648ee4ae1e1668608eCAS |

[21]  (a) J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 1999, 110, 2822.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltlKntg%3D%3D&md5=97f87319543430651a5728a34af409b5CAS |
      (b) J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 2000, 112, 6532.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision E.01 2013 (Gaussian, Inc.: Wallingford, CT).

[23]  Y. Singh, R. H. Prager, Aust. J. Chem. 1992, 45, 1811.
         | 1:CAS:528:DyaK3sXht1CnsLY%3D&md5=cdfd07d23c83015575fa8e8fddf10757CAS |

[24]  (a) R. H. Prager, Y. Singh, B. Weber, Aust. J. Chem. 1994, 47, 1249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlCjsrY%3D&md5=2fa3c733f1c5ef274adad451ec45cae4CAS |
      (b) K. H. Ang, R. H. Prager, C. M. Williams, Aust. J. Chem. 1995, 48, 567.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. H. Ang, R. H. Prager, J. A. Smith, B. Weber, C. M. Williams, Tetrahedron Lett. 1996, 37, 675.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) R. H. Prager, C. M. Williams, Aust. J. Chem. 1996, 49, 1315.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) R. H. Prager, J. A. Smith, B. Weber, C. M. Williams, J. Chem. Soc., Perkins Trans. 1 1997, 2665.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) R. H. Prager, M. R. Taylor, C. M. Williams, J. Chem. Soc., Perkins Trans. 1 1997, 2673.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) J. Khalafy, C. E. Svensson, R. H. Prager, C. M. Williams, Tetrahedron Lett. 1998, 39, 5405.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) J. Khalafy, R. H. Prager, C. M. Williams, Aust. J. Chem. 1999, 52, 31.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  M. Stark, D. R. Arnold, J. Chem. Soc., Chem. Commun. 1982, 434.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XkvFWrsbc%3D&md5=7b22d26478f03eefb37ff1e7eaeaedc4CAS |

[26]  T. D. Walsh, R. C. Long, J. Am. Chem. Soc. 1967, 89, 3943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXltVOqtrc%3D&md5=09eb4f6433d31eecd03e315702bb84c4CAS |

[27]  T. Latowski, B. Zelent, Rocz. Chem. 1977, 51, 1405.
         | 1:CAS:528:DyaE1cXkvF2mtw%3D%3D&md5=16f2c9609b851a9effabc019971b7e51CAS |

[28]  C. S. Hansen, S. J. Blanksby, N. Chalyavi, E. J. Bieske, J. R. Reimers, A. J. Trevitt, J. Chem. Phys. 2015, 142, 014301.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  (a) T. L. Ho, Synth. Commun. 1973, 3, 99.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXkslyhtL8%3D&md5=2eb4a2f73dbd1cf77dabfeeb72f08095CAS |
      (b) G. R. Newkome, V. K. Majestic, J. D. Sauer, Org. Prep. Proced. Int. 1980, 12, 345.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  M. J. Barnes, Waste Management 91 CONF-910270-66, 1991.

[31]  F. Zhu, J.-L. Tao, Z.-X. Wang, Org. Lett. 2015, 17, 4926.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFersrvE&md5=50fd9454d1655dd42b08dd8f47c7429cCAS |

[32]  T. Uemura, M. Yamaguchi, N. Chatani, Angew. Chem. Int. Ed. 2016, 55, 3162.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslSrtLs%3D&md5=ae24c491dbb802051f78efdabed8ca2cCAS |

[33]  F. Minisci, F. R. Bernardi, F. Bertini, R. Galli, M. Perchinummo, Tetrahedron 1971, 27, 3575.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXkvFyns7g%3D&md5=d6de7ceefab7bb6f5aab1312add75da5CAS |

[34]  D. A. DiRocco, K. Dykstra, S. Krska, P. Vachal, D. V. Conway, M. Tudge, Angew. Chem. Int. Ed. 2014, 53, 4802.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFOlsLo%3D&md5=6e52752b1aa5ecf2e3d37c7b8b98504bCAS |

[35]  D. D. Perin, W. L. F. Armarego, Purification of Laboratory Chemicals (3rd edn) 1988 (Permagon Press: Oxford).

[36]  F. Jiang, D. Bezier, J. Sortais, C. Darcel, Adv. Synth. Catal. 2011, 353, 239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFamsro%3D&md5=ea0c65b3353cd16f18008638333fdd1dCAS |

[37]  J. L. Díaz, B. Villacampa, F. López-Calahorra, D. Velasco, F. Lo, Chem. Mater. 2002, 14, 2240.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  T. Erker, G. Brunhofer, U. Jäger, K. Vanura, V. Dirsch, E. Heiß, WO 2012/013725 A1.

[39]  L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVSlurk%3D&md5=e0ff15107f5b5db7053aa30bb6753041CAS |

[40]  G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Adv. 2008, A64, 112.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  L. J. Farrugia, J. Appl. Cryst. 1997, 30, 565.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1KgsLg%3D&md5=afe63b4b63485dfd2f09b284de26e9d3CAS |