Singlet Photoreactivity of 3-Methyl-2-phenyl-2H-azirine
Geethika K. Weragoda A , Anushree Das A , Sujan K. Sarkar A , H. Dushanee M. Sriyarathne A , Xiaoming Zhang A , Bruce S. Ault A and Anna D. Gudmundsdottir A BA Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA.
B Corresponding author. Email: Anna.Gudmundsdottir@uc.edu
Australian Journal of Chemistry 70(4) 413-420 https://doi.org/10.1071/CH16604
Submitted: 26 October 2016 Accepted: 2 February 2017 Published: 2 March 2017
Abstract
Irradiation of 3-methyl-2-phenyl-2H-azirine (1) at 254 nm in argon matrices results in ylide 6. Similarly, laser flash photolysis (λ = 266 nm) of azirine 1 in acetonitrile yields ylide 6, which has a transient absorption with λmax at ~340 nm and a lifetime of 14 μs. Density functional theory calculations were preformed to support the characterisation of ylide 6 in solution and argon matrices. Irradiation of azirine 1 above 300 nm has previously been reported (J. Org. Chem. 2014, 79, 653) to yield triplet vinylnitrene in solution and ketenimine in cryogenic argon matrices. Thus, the photochemistry of azirine 1 is dependent on the irradiation wavelength.
References
[1] A. F. Khlebnikov, M. S. Novikov, Tetrahedron 2013, 69, 3363.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjs1CgsLY%3D&md5=75c60ecd7d7cc8fd20ae7d77e332f696CAS |
[2] A. Padwa, Acc. Chem. Res. 1976, 9, 371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktlak&md5=4907cada2a0c3a4f6a3d7458e33b42e2CAS |
[3] A. Padwa, J. Smolanoff, Tetrahedron Lett. 1974, 15, 33.
| Crossref | GoogleScholarGoogle Scholar |
[4] A. Padwa, P. H. J. Carlsen, in Reactive Intermediates (Ed. R. A. Abramovitch) 1982, Vol. 2, pp. 55–119 (Springer: Boston, MA).
[5] H. Inui, S. Murata, Chem. Commun. 2001, 1036.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs1Grtrg%3D&md5=fbfdec90c1a9c34b54275e2018136078CAS |
[6] H. Inui, S. Murata, J. Am. Chem. Soc. 2005, 127, 2628.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps12gtQ%3D%3D&md5=7af6336ba60db33c6d8b6b80709b118fCAS |
[7] X. Zhang, S. K. Sarkar, G. K. Weragoda, S. Rajam, B. S. Ault, A. D. Gudmundsdottir, J. Org. Chem. 2014, 79, 653.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOntLjL&md5=137a452f7654184535f5a38b57f5f3b9CAS |
[8] F. Mueller, J. Mattay, in CRC Handbook of Organic Photochemistry and Photobiology (Eds W. M. Horspool, P.-S. Song) 1995, pp. 931–936 (CRC Press: Boca Raton, FL).
[9] A. Padwa, R. J. Rosenthal, W. Dent, P. Filho, N. J. Turro, D. A. Hrovat, I. R. Gould, J. Org. Chem. 1984, 49, 3174.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXkvFSjur0%3D&md5=2d3643ccb484d5b3eccc6f7c3e107615CAS |
[10] S. K. Sarkar, A. Sawai, K. Kanahara, C. Wentrup, M. Abe, A. D. Gudmundsdottir, J. Am. Chem. Soc. 2015, 137, 4207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktlektbo%3D&md5=2322cb3c268ae367eb2b624bb51de9e7CAS |
[11] S. K. Sarkar, O. Osisioma, W. L. Karney, M. Abe, A. D. Gudmundsdottir, J. Am. Chem. Soc. 2016, 138, 14905.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslCgsrjL&md5=9f4670083b2935e519f19092e6fed1daCAS |
[12] R. A. A. U. Ranaweera, T. Scott, Q. Li, S. Rajam, A. Duncan, R. Li, A. Evans, C. Bohne, J. P. Toscano, B. S. Ault, A. D. Gudmundsdottir, J. Phys. Chem. A 2014, 118, 10433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVymt7jM&md5=090f266e8243603268cdf41523b4f9f8CAS |
[13] S. Muthukrishnan, J. Sankaranarayanan, R. F. Klima, T. C. S. Pace, C. Bohne, A. D. Gudmundsdottir, Org. Lett. 2009, 11, 2345.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1Glu7o%3D&md5=4df4009bd5eb3fa0aea16d94119de3a7CAS |
[14] S. Rajam, R. S. Murthy, A. V. Jadhav, Q. Li, C. Keller, C. Carra, T. C. S. Pace, C. Bohne, B. S. Ault, A. D. Gudmundsdottir, J. Org. Chem. 2011, 76, 9934.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGkt7nM&md5=1590b9ca2a24cd2a8e97067c722cd90bCAS |
[15] E. Albrecht, J. Mattay, S. Steenken, J. Am. Chem. Soc. 1997, 119, 11605.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt1eqtLg%3D&md5=799c47ce984cbc7b59f391993e6d3f8eCAS |
[16] J. B. Foresman, AE. Frisch, Exploring Chemistry with Electronic Structure Methods 1996 (Gaussian, Inc.: Pittsburgh, PA).
[17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 2009 (Gaussian, Inc.: Wallingford, CT).
[18] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=cd069e9165ffddacc154f2d6ee26a63bCAS |
[19] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=a4fd99b0357ab941e5799cbcb338fdb2CAS |
[20] A. Admasu, A. D. Gudmundsdóttir, M. S. Platz, J. Phys. Chem. A 1997, 101, 3832.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXislKhtb8%3D&md5=4f39cfcb60d084e8ad10d0fef47dec4dCAS |
[21] D. Bégué, C. Wentrup, J. Org. Chem. 2014, 79, 1418.
| Crossref | GoogleScholarGoogle Scholar |
[22] C. M. Nunes, I. Reva, R. Fausto, D. Begue, C. Wentrup, Chem. Commun. 2015, 51, 14712.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Chsb3L&md5=9318d350aa31d9b71a709d02eab74448CAS |
[23] P. Caramella, R. W. Gandour, J. A. Hall, C. G. Deville, K. N. Houk, J. Am. Chem. Soc. 1977, 99, 385.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXovFShsg%3D%3D&md5=9b26b8e6cf90f4798477ae1772d77a75CAS |
[24] P. Caramella, K. N. Houk, J. Am. Chem. Soc. 1976, 98, 6397.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkslGh&md5=311e0fc4f8e1bcc3a42c27a7d4c78609CAS |
[25] D. Begue, C. Addicott, R. Burgard, P. Bednarek, E. Guille, I. Baraille, C. Wentrup, J. Org. Chem. 2014, 79, 2148.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisVWiu74%3D&md5=b5611248c1dbf05f684c8fadb43334bcCAS |
[26] G. Bertrand, C. Wentrup, Angew Chem. 1994, 106, 549.[Angew. Chem., Int. Ed. Engl. 1994, 33, 527].
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktVyhsbg%3D&md5=cc5f70757176b7c91e546177e1cf6d54CAS |
[27] B. Singh, A. Zweig, J. B. Gallivan, J. Am. Chem. Soc. 1972, 94, 1199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhtVKgtLs%3D&md5=57c802804caf423827c348d33c942f67CAS |
[28] H. Inui, S. Murata, Chem. Lett. 2001, 30, 832.
| Crossref | GoogleScholarGoogle Scholar |
[29] H. Inui, S. Murata, Chem. Phys. Lett. 2002, 359, 267.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVemtLY%3D&md5=f9d5e994bf02c3a9e628535b0b8ed060CAS |
[30] E. Orton, S. T. Collins, G. C. Pimentel, J. Phys. Chem. 1986, 90, 6139.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlvFShtr0%3D&md5=0438aee9b3d2943fdd675f13ca27415cCAS |
[31] C. M. Nunes, I. Reva, T. M. V. D. Pinho e Melo, R. Fausto, J. Org. Chem. 2012, 77, 8723.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlaisr3I&md5=c25e123407d85d18fce152378bcddadbCAS |
[32] C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsVahtbk%3D&md5=75414cbbb9efa65d0bc8c177e808fb17CAS |
[33] C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktl2rt78%3D&md5=66d8150cbec8983122fb3bca1de1305fCAS |
[34] R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256, 454.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFWltrs%3D&md5=b0335c7ecbbb3fd4ba3175827c6a513aCAS |
[35] R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 1998, 109, 8218.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFygsLs%3D&md5=4e2f3f754873eef4b9c0a6621840a89fCAS |
[36] J. B. Foresman, M. Head-Gordon, J. A. Pople, M. J. Frisch, J. Phys. Chem. 1992, 96, 135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xks1GhsA%3D%3D&md5=5e3d57c79cfcccb77291e87401677108CAS |
[37] B. S. Ault, J. Am. Chem. Soc. 1978, 100, 2426.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXitVSgurk%3D&md5=69729036e8de8cab754c2644160c9eaaCAS |
[38] H. Bader, H. J. Hansen, Helv. Chim. Acta 1978, 61, 286.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXht1Wjt78%3D&md5=3ad99db23a1992a40f595f61f9403be2CAS |
[39] V. Nair, T. G. George, V. Sheeba, A. Augustine, L. Balagopal, L. G. Nair, Synlett 2000, 1597.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1Ghtr8%3D&md5=e9eb70c52b87f69a2c23c965ca681fd3CAS |