An Efficient Chemical Synthesis of Lassomycin Enabled by an On-Resin Lactamisation–Off-Resin Methanolysis Strategy and Preparation of Chemical Variants
Paul W. R. Harris A B E , Gregory M. Cook B D , Ivanhoe K. H. Leung A and Margaret A. Brimble A B CA School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.
B Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.
C School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
D Department of Microbiology and Immunology, School of Medical Sciences, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand.
E Corresponding author. Email: paul.harris@auckland.ac.nz
Australian Journal of Chemistry 70(2) 172-183 https://doi.org/10.1071/CH16499
Submitted: 7 September 2016 Accepted: 7 October 2016 Published: 28 October 2016
Abstract
An efficient synthesis of the naturally occurring cyclic peptide lassomycin that bears a unique Asp–Gly isopeptide bond and a C-terminal methyl ester is described. On-resin cyclisation between 1Gly and side chain 8Asp and a subsequent solution-phase transesterification reaction afforded synthetic lassomycin in high yield. Several analogues were also prepared using the optimised methodology. None of the cyclised peptides, including the synthetic natural product, exhibited any significant activity against Mycobacterium tuberculosis. Comparison of the spectroscopic data for synthetic lassomycin with naturally occurring lassomycin concluded they were otherwise identical.
References
[1] A. Zumla, P. Nahid, S. T. Cole, Nat. Rev. Drug Discov. 2013, 12, 388.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1Kmsrk%3D&md5=3dd48e707c080f0ae1ac0a6ab2e70234CAS | 23629506PubMed |
[2] Global Tuberculosis Report 2012 (World Health Organization: Geneva).
[3] (a) J. Cohen, Science 2013, 339, 130.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCjt78%3D&md5=7e7a4dd4f6a10a49a3f9e418805ea2a5CAS | 23307714PubMed |
(b) K. Andries, P. Verhasselt, J. Guillemont, H. W. H. Gohlmann, J. Neefs, H. Winkler, J. Gestel, P. Timmerman, M. Zhu, E. Lee, P. Williams, D. de Chaffoy, E. Huitric, S. Hoffner, E. Cambau, C. Truffot-Pernot, N. Lounis, V. Jarlier, Science 2005, 307, 223.
| Crossref | GoogleScholarGoogle Scholar |
[4] E. Gavrish, C. S. Sit, S. Cao, O. Kandror, A. Spoering, A. Peoples, L. Ling, A. Fetterman, D. Hughes, A. Bissell, H. Torrey, T. Akopian, A. Mueller, S. Epstein, A. Goldberg, J. Clardy, K. Lewis, Chem. Biol. 2014, 21, 509.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFeqtLc%3D&md5=a40502955d5a61c48d109738aa2c7c37CAS | 24684906PubMed |
[5] (a) I. Kavianinia, L. Kunalingam, P. W. R. Harris, G. M. Cook, M. A. Brimble, Org. Lett. 2016, 18, 3878.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1ekt77P&md5=362608d818e9a556864fb586e797b22cCAS | 27467118PubMed |
(b) L. M. De Leon Rodriguez, H. Kaur, M. A. Brimble, Org. Biomol. Chem. 2016, 14, 1177.
| Crossref | GoogleScholarGoogle Scholar |
[6] W. Weber, W. Fischli, E. Hochuli, E. Kupfer, E. K. Weibel, J. Antibiot. 1991, 44, 164.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVehsL0%3D&md5=f83788645e4ab33ad685090f997e4915CAS | 1849131PubMed |
[7] (a) M. O. Maksimov, S. J. Pan, A. J. Link, Nat. Prod. Rep. 2012, 29, 996.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKnsbnE&md5=2562ee9fa476d0364a41a0c1593fc7e4CAS | 22833149PubMed |
(b) J. D. Hegemann, M. Zimmerman, X. Xie, M. A. Marahiel, Acc. Chem. Res. 2015, 48, 1909.
| Crossref | GoogleScholarGoogle Scholar |
(c) N. Zhao, Y. Pan, Z. Cheng, H. Liu, Amino Acids 2016, 48, 1347.
| Crossref | GoogleScholarGoogle Scholar |
[8] K. J. Rosengren, R. J. Clark, N. L. Daly, U. Gçransson, A. Jones, D. J. Craik, J. Am. Chem. Soc. 2003, 125, 12464.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlyqt7o%3D&md5=d9b0ed94cdad852c3e8d06a801107e15CAS | 14531690PubMed |
[9] (a) S. Duquesne, D. Destoumieux-Garzon, S. Zirah, C. Goulard, J. Peduzzi, S. Rebuffat, Chem. Biol. 2007, 14, 793.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlSnu78%3D&md5=bfdfb063aa88f08baef103421590b9f8CAS | 17656316PubMed |
(b) K. P. Yan, Y. Li, S. Zirah, S. Goulard, T. A. Knappe, M. A. Marahiel, S. Rebuffat, ChemBioChem 2012, 13, 1046.
| Crossref | GoogleScholarGoogle Scholar |
[10] M. Amblard, J. Fehrentz, J. Martinez, G. Subra, Mol. Biotechnol. 2006, 33, 239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFygsb4%3D&md5=f40be585eb40650b82656819f1de153aCAS | 16946453PubMed |
[11] E. Atherton, C. J. Logan, R. C. Sheppard, J. Chem. Soc., Perkin Trans. 1 1981, 538.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhslGmsLg%3D&md5=b562616b5b4bda16eae0e2782d259935CAS |
[12] F. Albericio, G. Barany, Int. J. Pept. Protein Res. 1985, 26, 92.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsV2gurw%3D&md5=a2a1e0b5f97d3566ae5e6983acb99f8bCAS | 4055231PubMed |
[13] H. Rink, Tetrahedron Lett. 1987, 28, 3787.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktlyhs7Y%3D&md5=4ecf32ad727744d1c2cdbb808c894299CAS |
[14] S. Lear, T. Munshi, A. S. Hudson, C. Hatton, J. Clardy, J. A. Mosely, T. J. Bull, C. S. Sit, S. L. Cobb, Org. Biomol. Chem. 2016, 14, 4534.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmsF2nsL8%3D&md5=b18fb128d72d64e3a11d993fe444bfa2CAS | 27101411PubMed |
[15] C. Yue, J. Terry, P. Potier, Tetrahedron Lett. 1993, 34, 323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitFenu7c%3D&md5=ee713dc0ee74b652bd6e1cc95b6f0678CAS |
[16] P. W. R. Harris, S. H. Yang, M. A. Brimble, Tetrahedron Lett. 2011, 52, 6024.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12qs7fM&md5=f0c739c91bf3c88bb1436be93cc550d8CAS |
[17] (a) W. R. Abd-Elgaliel, F. Gallazzi, S. Z. Lever, J. Pept. Sci. 2007, 13, 487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1WlsLc%3D&md5=5ae16b95e88b804a4bfa14cc3c9ad97dCAS | 17559059PubMed |
(b) J. Hansen, F. Diness, M. Meldal, Org. Biomol. Chem. 2016, 14, 3238.
| Crossref | GoogleScholarGoogle Scholar |
[18] Available from Merck Millipore, cat. no. 852086.
[19] R. Chen, T. J. Tolbert, J. Am. Chem. Soc. 2010, 132, 3211.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvF2ks7g%3D&md5=b47004a1c36fea7b3be397b6868d1be6CAS | 20158247PubMed |
[20] F. Albericio, J. M. Bofill, A. El-Faham, S. A. Kates, J. Org. Chem. 1998, 63, 9678.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1ymtL8%3D&md5=4cf597e14171bb7ffb3b671ac2573ab5CAS |
[21] (a) G. M. Williams, K. Lee, X. Li, G. J. S. Cooper, M. A. Brimble, Org. Biomol. Chem. 2015, 13, 4059.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjsFCqs7k%3D&md5=d915b0da04bbcb5a19a50bafb440dd26CAS | 25731597PubMed |
(b) M. A. Hossain, A. Belgi, F. Lin, S. Zhang, F. Shabanpoor, L. Chan, C. Belyea, H. T. Truong, A. R. Blair, S. Andrikopoulos, G. W. Tregear, J. D. Wade, Bioconjug. Chem. 2009, 20, 1390.
| Crossref | GoogleScholarGoogle Scholar |
[22] F. A. Robey, R. L. Fields, Anal. Biochem. 1989, 177, 373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXjs1Chug%3D%3D&md5=d1608d74defa56c5ba554a4ae8494ba8CAS | 2729557PubMed |
[23] Available from Merck Millipore, cat. no. 531147.
[24] R. Soudy, L. Wang, K. Kaur, Bioorg. Med. Chem. 2012, 20, 1794.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFeis7k%3D&md5=4c09c21169cac250694f30f812d01a5cCAS | 22304849PubMed |