Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis of Multicomponent Peptide-Based Vaccine Candidates against Group A Streptococcus

Waleed M. Hussein A D , Jiaxin Xu A , Pavla Simerska A and Istvan Toth A B C D
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia.

B Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia.

C School of Pharmacy, The University of Queensland, Brisbane, Qld 4072, Australia.

D Corresponding authors. Email: w.hussein@uq.edu.au; i.toth@uq.edu.au

Australian Journal of Chemistry 70(2) 184-190 https://doi.org/10.1071/CH16501
Submitted: 8 September 2016  Accepted: 17 October 2016   Published: 7 November 2016

Abstract

Group A streptococcus (GAS; Streptococcus pyogenes), known as the ‘flesh-eating bacterium’, is a human bacterial pathogen that normally causes benign infections (e.g. sore throat and pyoderma), but is also responsible for severe invasive infections (e.g. ‘flesh-eating’ disease and toxic shock syndrome), heart disease, and kidney failure. A safe commercial GAS vaccine is yet to be developed. Individual GAS antigens demonstrate potential universal expression across all GAS serotypes (>200 known), with dramatically reduced concern for autoimmune complications, and compelling efficacy in preclinical testing in mice. In this study, we developed a stepwise conjugation strategy, copper-catalysed alkyne–azide cycloaddition reaction (CuAAC), followed by mercapto–maleimide conjugation, to synthesise a multiantigenic, self-adjuvanting, peptide-based vaccine candidate against GAS. This multiantigenic vaccine includes two GAS antigens, J8 and NS1, a T-helper epitope, PADRE, and a self-adjuvanting moiety, dipalmitoyl serine.


References

[1]  A. C. Steer, J. R. Carapetis, Nat. Rev. Cardiol. 2009, 6, 689.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  J. N. Cole, A. Henningham, C. M. Gillen, V. Ramachandran, M. J. Walker, Proteomics Clin. Appl. 2008, 2, 387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVCjtrc%3D&md5=fe0891e85650e583bd1a8a010fa48617CAS |

[3]  P. M. Moyle, W. Dai, Y. K. Zhang, M. R. Batzloff, M. F. Good, I. Toth, Bioconjug. Chem. 2014, 25, 965.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlslSmt7o%3D&md5=a5d2fcccc35761e2b21ecc21fafeee8aCAS |

[4]  P. M. Moyle, J. Hartas, A. Henningham, M. R. Batzloff, M. F. Good, I. Toth, Nanomedicine 2013, 9, 935.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvVelu78%3D&md5=cec683b78862e52c21e2de8885c756eeCAS |

[5]  J. Alexander, J. Sidney, S. Southwood, J. Ruppert, C. Oseroff, A. Maewal, K. Snoke, H. M. Serra, R. T. Kubo, A. Sette, H. M. Grey, Immunity 1994, 1, 751.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXislWktL4%3D&md5=02f46e0867edd934d1615fd763d725f9CAS |

[6]  P. M. Moyle, I. Toth, ChemMedChem 2013, 8, 360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFyquw%3D%3D&md5=a73b6a1d8d11632976b3c1cfed9c4576CAS |

[7]  M. Skwarczynski, I. Toth, Chem. Sci. 2016, 7, 842.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVeitr3L&md5=25889a485b5805be598820256abc4f1fCAS |

[8]  F. E. Lund, T. D. Randall, Nat. Rev. Immunol. 2010, 10, 236.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFSmtbg%3D&md5=c8fa57c1699c8c10f9b51fcd82731a5fCAS |

[9]  A. W. Purcell, J. McCluskey, J. Rossjohn, Nat. Rev. Drug Discov. 2007, 6, 404.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslyiu7s%3D&md5=42a1ba5866bd0e90e7ef5cac70e5b066CAS |

[10]  A. B. M. Abdel-Aal, M. R. Batzloff, Y. Fujita, N. Barozzi, A. Faria, P. Simerska, P. M. Moyle, M. F. Good, I. Toth, J. Med. Chem. 2008, 51, 167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWgurzL&md5=73511a214cbcdcf8b0c93bf19f901f6dCAS |

[11]  P. M. Moyle, C. Olive, M.-F. Ho, M. F. Good, I. Toth, J. Med. Chem. 2006, 49, 6364.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvFequr0%3D&md5=e026a84f220df17005205cd3249e2f78CAS |

[12]  M. Skwarczynski, I. Toth, Nanomedicine 2014, 9, 2657.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFahurrE&md5=ccd32ab94ef771183e47475293d9a35cCAS |

[13]  S. G. Reed, S. Bertholet, R. N. Coler, M. Friede, Trends Immunol. 2009, 30, 23.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktF2ktA%3D%3D&md5=a20143e503b224934f4960340aa38c52CAS |

[14]  R. Rappuoli, M. Pizza, G. Del Giudice, E. De Gregorio, Proc. Natl. Acad. Sci. USA 2014, 111, 12288.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVarsLnJ&md5=58268265ef580e377c5739a3d46f1d6aCAS |

[15]  M. Skwarczynski, M. Zaman, C. N. Urbani, I. C. Lin, Z. Jia, M. R. Batzloff, M. F. Good, M. J. Monteiro, I. Toth, Angew. Chem. Int. Ed. 2010, 49, 5742.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1Cqsbo%3D&md5=7a19baed0b2e9ffc45aa620083885814CAS |

[16]  W. M. Hussein, P. Choi, C. Zhang, M. Su, E. Sierecki, W. Johnston, V. Fagan, K. Alexandrov, M. Skwarczynski, Y. Gambin, I. Toth, P. Simerska, Curr. Drug Deliv. 2016, 13,
         | Crossref | GoogleScholarGoogle Scholar |

[17]  W. M. Hussein, T.-Y. Liu, P. Maruthayanar, S. Mukaida, P. M. Moyle, J. W. Wells, I. Toth, M. Skwarczynski, Chem. Sci. 2016, 7, 2308.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhtl2lsQ%3D%3D&md5=8c899262765c1f66196db89058ac2058CAS |

[18]  W. M. Hussein, T.-Y. Liu, Z. Jia, N. A. J. McMillan, M. J. Monteiro, I. Toth, M. Skwarczynski, Bioorg. Med. Chem. 2016, 24, 4372.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1Ght7fM&md5=aec376f726597d39e7a8bce9c4090dd9CAS |