Evaluation of Methanol Induced Free Radicals in Mice Liver
Lifang Zhou A B , Hongli Zhao A , Tieying Pan B , Adrian Trinchi C , Minbo Lan A B E and Gang Wei A D EA Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
B Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China.
C CSIRO Manufacturing, Private Bag 10, Clayton South, Vic. 3169, Australia.
D CSIRO Manufacturing, PO Box 218, Lindfield, NSW 2070, Australia.
E Corresponding authors. Email: minbolan@ecust.edu.cn; gang.wei@csiro.au
Australian Journal of Chemistry 70(5) 499-504 https://doi.org/10.1071/CH16492
Submitted: 30 August 2016 Accepted: 15 November 2016 Published: 14 December 2016
Abstract
Methanol induced oxidative stress (OS) models in mice were successfully established and evaluated by the electron paramagnetic resonance (EPR) spin trapping technique. The capacity for removal of reactive oxygen species (ROS) free radicals by rhubarb and vitamin C (Vc) as candidate materials was also investigated. EPR was employed to determine the free radicals generated from a spin trapping agent, α-phenyl-N-tert-butylnitrone (PBN), that reacted with the ROS. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and the level of malondialdehyde (MDA) were also evaluated by enzyme assays. The results indicated that methanol clearly promoted the generation of ROS free radicals in the liver of mice. The activity of SOD and GSH-PX was reduced significantly, although the level of MDA was increased as a result of the harmful effect of methanol. In addition, rhubarb and Vc exhibited a protective effect on the mice liver under acute OS.
References
[1] M. Kopani, P. Celec, L. Danisovic, P. Michalka, C. Biro, Clin. Chim. Acta 2006, 364, 61.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslWgsQ%3D%3D&md5=69c581be0ea638cc468999e64f1db6dfCAS |
[2] C. Sgherri, C. Scattion, C. Pinzino, P. Tonutti, A. M. Ranieri, Plant Physiol. Biochem. 2015, 96, 124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVyjsLjE&md5=e98d7e0ea3a44a7be7fe8abd4490718dCAS |
[3] A. M. Pisoschi, A. Pop, Eur. J. Med. Chem. 2015, 97, 55.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnvFSgtbo%3D&md5=c0b0f1eee7e2f0ddc33128e2fa6efc98CAS |
[4] R. A. Perkins, K. W. Ward, G. M. Pollack, Pharm. Res. 1996, 13, 749.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivFaqu7k%3D&md5=9fa8732465afc3817bef8a998d9d2651CAS |
[5] K. Wakayama, S. Yamaguchi, A. Takeuchi, T. Mizumura, S. Ozawa, N. Tomizuka, T. Hayakawa, T. Nakagawa, J. Biosci. Bioeng. 2016, 122, 545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xlsleqtrw%3D&md5=62099835337aa680110e55c6810e767dCAS |
[6] S. H. Poirier, M. L. Knuth, C. D. Anderson-Buchou, L. T. Brooke, A. R. Lima, P. J. Shubat, Bull. Environ. Contam. Toxicol. 1986, 37, 615.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlvVGntbw%3D&md5=83f2513eafb8de6daa1c6cfb15e0b565CAS |
[7] N. J. Parthasarathy, R. S. Kumar, S. Manikandan, G. S. Narayanan, R. V. Kumar, R. S. Devi, Chem. Biol. Interact. 2006, 161, 14.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVGis7g%3D&md5=ea5ab3ab29b5dcac6a6288e44583629fCAS |
[8] J.-M. Chen, G.-Y. Zhu, W.-T. Xia, Z.-Q. Zhao, Toxicology 2012, 293, 89.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFCqtrk%3D&md5=e2a4f946435c8955990ebe1c8a4aa085CAS |
[9] Q.-A. Zhang, Y. Shen, X.-H. Fan, J. F. G. Martin, X. Wang, Y. Song, Ultrason. Sonochem. 2015, 27, 96.
| Crossref | GoogleScholarGoogle Scholar |
[10] K. Takeshita, K. Fujii, K. Anzai, T. Ozawa, Free Radic. Biol. Med. 2004, 36, 1134.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtVemt7g%3D&md5=bcb71e2d7814df5233987a529de5e1d8CAS |
[11] J. M. Fontmorin, R. C. Burgos Castillo, W. Z. Tang, M. Sillanpaa, Water Res. 2016, 99, 24.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XntVCkt7Y%3D&md5=f72368883102bd5b5d4fdaf008ea38d7CAS |
[12] Z. Ma, B. Zhao, Z. Yuan, Anal. Chim. Acta 1999, 389, 213.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVehurg%3D&md5=bd3d8e9cf57905f5af6fb5b946352dd4CAS |
[13] G. R. Buettner, R. P. Mason, Methods Enzymol. 1990, 186, 127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkt1eksLY%3D&md5=f4ca3e37b6efe3cc2bff6c8f70fa5e89CAS |
[14] M. B. Kadiiska, R. P. Mason, Free Radic. Biol. Med. 2000, 28, 1106.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1Cgt7c%3D&md5=072de2fa9627b452e5cc9401bc504006CAS |
[15] B. Nieradko-Iwanicka, A. Borzecki, Pharmacol. Res. 2016, 68, 495.
| 1:CAS:528:DC%2BC28Xitlynur4%3D&md5=a1b06670955f640899f32a16c6da0741CAS |
[16] X. Lu, C. Wang, B. Z. Liu, Fish Shellfish Immunol. 2015, 42, 58.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVOks7zP&md5=19d6987e751954aed8d0d0201cf4d706CAS |
[17] R. T. Di Giulio, P. C. Washburn, R. J. Wenning, G. W. Winston, C. S. Jewell, Environ. Toxicol. Chem. 1989, 8, 1103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltVSguw%3D%3D&md5=3767f713903bacce03cb889856dbda5eCAS |
[18] D. Fournier, J. M. Bride, M. Poirie, J. B. Berge, F. W. Plapp, J. Biol. Chem. 1992, 267, 1840.
| 1:CAS:528:DyaK3sXhsVansLw%3D&md5=1a816123dba495e230613d5eab98e1d5CAS |
[19] J. S. Woods, T. J. Kavanagh, J. Corrral, A. W. Reese, D. Diaz, M. E. Ellis, Toxicol. Appl. Pharmacol. 1999, 160, 207.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFOmsbo%3D&md5=f083134421ca42c10a5426ba40789063CAS |
[20] D. Tsikas, S. Rothmann, J. Y. Schneider, M.-T. Suchy, A. Trettin, D. Modun, N. Stuke, N. Maassen, J. C. Frolich, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1019, 95.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslent7zJ&md5=c35acf250646ab7fc18c3c25eaf65831CAS |
[21] A. Cherubini, C. Ruggiero, M. C. Polidori, P. Mecocci, Free Radic. Biol. Med. 2005, 39, 841.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslyhur0%3D&md5=7d38c8d0f780fd4fd757beb7bc83cf5eCAS |
[22] S.-S. Zhou, L.-L. Cao, W.-D. Xu, J. Cao, Z.-J. Zhao, Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 2015, 189, 84.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlSntLfJ&md5=49537304e6fdd770eb30cd16a3f42f54CAS |
[23] A. Iizuka, O. T. Iijima, K. Kondo, H. Itakura, F. Yoshie, H. Miyamoto, M. Kubo, M. Higuchi, H. Takeda, T. Matsumiya, J. Ethnopharmacol. 2004, 91, 89.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsV2rtLg%3D&md5=493ce6e5ccd204cd6894b85deb06048aCAS |
[24] M. L. Urso, P. M. Clarkson, Toxicology 2003, 189, 41.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVCmt78%3D&md5=fd63575b3b2aba0732fe3148bb1c46fcCAS |
[25] M. Öztürk, F. A. Öztürk, M. E. Duru, G. Topçu, Food Chem. 2007, 103, 623.
[26] P. M. Gonzalez, M. B. Aguiar, G. Malanga, S. Puntarulo, Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 2013, 165, 439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksF2qtbw%3D&md5=a2aad10fb91c6ae3bba8d445000ad69dCAS |
[27] M. Jerzykiewicz, I. Cwielag-Piasecka, M. Witwicki, A. Jezierski, Chem. Phys. 2011, 383, 27.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslaitrY%3D&md5=edad7733f297da76b96226fe70aadc4dCAS |
[28] C. Vergely, V. Maupoil, G. Clermont, A. Bril, L. Rochette, Arch. Biochem. Biophys. 2003, 420, 209.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptl2qsLo%3D&md5=589ff24bc19d024a2816ef18ed9e1e27CAS |
[29] K. Yamada, I. Yamamiya, H. Utsumi, Free Radic. Biol. Med. 2006, 40, 2040.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVyju7k%3D&md5=9e0bbb7ef1ecef1cf17c8c002cce3b3cCAS |
[30] Y. Sun, H. Yu, J. Zhang, Y. Yin, H. Shi, X. Wang, Chemosphere 2006, 63, 1319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVOjtrk%3D&md5=9e2bb489d0ed71670e2530d5501daba8CAS |
[31] J. Liesivuori, H. Savolainen, Pharmacol. Toxicol. 1991, 69, 157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt1Gnu74%3D&md5=45e6eaf69178a555e6aa8cd7ae88563eCAS |
[32] K. E. McMartin, J. J. Ambre, T. R. Tephly, Am. J. Med. 1980, 68, 414.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c7ltV2gtg%3D%3D&md5=03d8707634486bb2dc15d4d430a2f924CAS |
[33] Y. Min, T. Sun, Z. Niu, F. Liu, Anim. Reprod. Sci. 2016, 171, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xpslynuro%3D&md5=8e1b08c60335048b4230843d2c3b9656CAS |
[34] Y. Luo, Y. Sui, X. Wang, Y. Tian, Chemosphere 2008, 71, 1260.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFCmsbY%3D&md5=f64dbf4674a1eaf912a725a22d819b8eCAS |
[35] E. F. Elstner, A. Heupel, Anal. Biochem. 1976, 70, 616.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhtFOnt7s%3D&md5=914e8e4991c91f6566c76a98c4cb167cCAS |
[36] D. G. Hafeman, R. A. Sunde, W. G. Hoekstra, J. Nutr. 1974, 104, 580.
| 1:CAS:528:DyaE2cXktFaitrw%3D&md5=83a3ce037b5e8d768471aaa78e1b3fd2CAS |
[37] H. Ohkawa, N. Ohishi, K. Yagi, Anal. Biochem. 1979, 95, 351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXksFaisbk%3D&md5=0540bf50e560be1250a502c2c36d1f36CAS |
[38] M. M. Bradford, Anal. Biochem. 1976, 72, 248.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVehtrY%3D&md5=63aff7cdc71a70ab64558ceb0c80b977CAS |