Molecular Assemblies and Spin-Crossover Behaviour of Cobalt(ii) Complexes with Terpyridine Incorporating Different Nitrogen Positions in Pyridine Rings
Risa Nakahara A , Manabu Nakaya A , Jong Won Shin B , Ryo Ohtani A , Masaaki Nakamura A and Shinya Hayami A C DA Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan.
B Daegu-Gyeongbuk Branch, Korea Institute of Science and Technology Information, 90 Yutongdanji-ro, Buk-gu, Daegu 41515, South Korea.
C Institute of Pulsed Power Science (IPPS), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
D Corresponding author. Email: hayami@sci.kumamoto-u.ac.jp
Australian Journal of Chemistry 70(5) 494-498 https://doi.org/10.1071/CH16556
Submitted: 4 October 2016 Accepted: 12 November 2016 Published: 14 December 2016
Abstract
Cobalt(ii) complexes with terpyridine-type ligands, [Co(n-pyterpy)2](ClO4)2 (n = 3 (1), 4 (2)), were prepared and characterised. Different positions of the nitrogen atom in the terpyridine ligands influenced their assembly properties in the crystal structures. Complex 1 showed a 2D network structure consisting of 1D chains connected by intermolecular N⋯HC interactions. On the other hand, complex 2 consisted of two different cobalt ion sites (Co1 and Co2) with slightly different coordination environments. Complex 2 showed 1D chains with no interchain interactions. Such differences are discussed with the cooperativities estimated by their spin crossover behaviours.
References
[1] (a) O. Kahn, C. J. Martinez, Science 1998, 279, 44.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1OjsQ%3D%3D&md5=517da80620c6a3d95356d442eacd7e99CAS |
(b) J. A. Real, E. Andres, M. C. Muñoz, M. Julve, T. Granier, A. Bousseksou, F. Varret, Science 1995, 268, 265.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) Spin Crossover in Transition Metal Compounds III, Topics in Current Chemistry, Vol. 235 (Eds P. Gütlich, H. A. Goodwin) 2004 (Springer-Verlag: Berlin).
(b) P. Gütlich, Y. Garcia, T. Woike, Coord. Chem. Rev. 2001, 219–221, 839.
(c) P. Gütlich, Y. Garcia, H. A. Goodwin, Chem. Soc. Rev. 2000, 29, 419.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. Gütlich, A. Hauser, H. Spiering, Angew. Chem. Int. Ed. Engl. 1994, 33, 2024.
| Crossref | GoogleScholarGoogle Scholar |
(e) H. A. Goodwin, Coord. Chem. Rev. 1976, 18, 293.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) J. Zarembowitch, R. Claude, O. Kahn, Inorg. Chem. 1985, 24, 1576.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhvFKmsro%3D&md5=212153a53cd63e9365a321f88a381099CAS |
(b) A. B. Gaspar, M. C. Munoz, V. Niel, J. A. Real, Inorg. Chem. 2001, 40, 9.
| Crossref | GoogleScholarGoogle Scholar |
[4] Spin Crossover in Transition Metal Compounds I, Topics in Current Chemistry, Vol. 233 (Eds P. Gütlich, H. A. Goodwin) 2004 (Springer-Verlag: Berlin).
[5] (a) A. J. Conti, C. L. Xie, D. N. Hendrickson, J. Am. Chem. Soc. 1989, 111, 1171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXoslCntQ%3D%3D&md5=eebe5fdf1d68608897914dd304a76d6cCAS |
(b) J. A. Real, E. Andrés, M. C. Muñoz, M. Julve, T. Granier, A. Bousseksou, F. Varret, Science 1995, 268, 265.
| Crossref | GoogleScholarGoogle Scholar |
(c) J.-F. Létard, P. Guionneau, E. Codjovi, O. Lavastre, G. Bravic, D. Chasseau, O. Kahn, J. Am. Chem. Soc. 1997, 119, 10861.
| Crossref | GoogleScholarGoogle Scholar |
[6] Y. Sunatsuki, Y. Ikuta, N. Matsumoto, H. Ohta, M. Kojima, S. Iijima, S. Hayami, Y. Maeda, S. Kaizaki, F. Dahan, J. P. Tuchagues, Angew. Chem. Int. Ed. 2003, 42, 1614.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlyit7o%3D&md5=f58edfbcbf708e917262b0318a884851CAS |
[7] (a) S. Hayami, Z. Z. Gu, M. Shiro, Y. Einaga, A. Fujishima, O. Sato, J. Am. Chem. Soc. 2000, 122, 7126.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksFOqs7k%3D&md5=21b1f869cfa022ba4d4b5cb42d84e25dCAS |
(b) S. Hayami, Z. Z. Gu, H. Yoshiki, A. Fujishima, O. Sato, J. Am. Chem. Soc. 2001, 123, 11644.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) S. Hayami, Y. Shigeyoshi, M. Akita, K. Inoue, K. Kato, K. Osaka, M. Takata, R. Kawajiri, T. Mitani, Y. Maeda, Angew. Chem. Int. Ed. 2005, 44, 4899.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFCnurk%3D&md5=5bcfddcb3169b6975247918c2ae01d86CAS |
(b) S. Hayami, R. Moriyama, A. Shuto, Y. Maeda, K. Ohta, K. Inoue, Inorg. Chem. 2007, 46, 7692.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Komatsu, K. Kato, Y. Yamamoto, H. Kamihata, Y. H. Lee, A. Fuyuhiro, S. Kawata, S. Hayami, Eur. J. Inorg. Chem. 2012, 2769.
| Crossref | GoogleScholarGoogle Scholar |
[9] K. Takami, R. Ohtani, M. Nakamura, T. Kurogi, M. Sugimoto, L. F. Lindoy, S. Hayami, Dalton Trans. 2015, 44, 18354.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlGrsr7N&md5=fac555e6298296290dae2722b20380caCAS |
[10] (a) C. Y. Chung, S. P. Li, K. K. Lo, V. W. Yam, Inorg. Chem. 2016, 55, 4650.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmsFCrs7o%3D&md5=0a541c9ff187205b2fa256fa8dd60349CAS |
(b) N. S. Kumar, M. Z. Shafikov, A. C. Whitwood, B. Donnio, P. B. Karadakov, V. N. Kozhevnikov, D. W. Bruce, Chem. – Eur. J. 2016, 22, 8215.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) C. A. Kilner, M. A. Halcrow, Dalton Trans. 2010, 39, 9008.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFygur7P&md5=f0b28aedbb48c07683f7ce341c569001CAS |
(b) S. Hayami, M. Nakaya, H. Ohmagari, S. A. Amolegbe, M. Nakamura, R. Ohtani, R. Yamaguchi, T. Kuroda-Sowa, J. K. Clegg, Dalton Trans. 2015, 44, 9345.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) A. B. Gaspar, M. C. Munoz, V. Niel, J. A. Real, Inorg. Chem. 2001, 40, 9.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFyrtLs%3D&md5=6d995832d529fac57c36c87a0d9b6852CAS |
(b) X. Zhang, Z.-X. Wang, H. Xie, M.-X. Li, T. J. Woods, K. R. Dunbar, Chem. Sci. 2016, 7, 1569.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) S. Hayami, R. Moriyama, Y. Shigeyoshi, R. Kawajiri, T. Mitani, M. Akita, K. Inoue, Y. Maeda, Inorg. Chem. 2005, 44, 7295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFSnsLs%3D&md5=e45c08bd6afecb46330a14e2acf604ebCAS |
(b) X. Zhang, H. Xie, M. Ballesteros-Rivas, Z.-X. Wang, K. R. Dunbar, J. Mater. Chem. C 2015, 3, 9292.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) S. Hayami, K. Hashiguchi, G. Juhasz, M. Ohba, H. Okawa, Y. Maeda, K. Kato, K. Osaka, M. Takata, K. Inoue, Inorg. Chem. 2004, 43, 4124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVWqtbw%3D&md5=62381fbd3bb7879f4a798358bdeee610CAS |
(b) R. Ohtani, K. Shimayama, A. Mishima, M. Ohba, R. Ishikawa, S. Kawata, M. Nakamura, L. F. Lindoy, S. Hayami, J. Mater. Chem. C 2015, 3, 7865.
| Crossref | GoogleScholarGoogle Scholar |
[15] S. Hayami, K. Hashiguchi, G. Juhasz, M. Ohba, H. Okawa, Y. Maeda, K. Kato, K. Osaka, M. Takata, K. Inoue, Inorg. Chem. 2004, 43, 4124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVWqtbw%3D&md5=62381fbd3bb7879f4a798358bdeee610CAS |
[16] J. W. Shin, K. Eom, D. Moon, J. Synchrotron Radiat. 2016, 23, 369.
| Crossref | GoogleScholarGoogle Scholar |
[17] Z. Otwinowski, W. Minor, in Methods in Enzymology (Eds C. W. Carter, Jr, R. M. Sweet) 1997, Vol. 276, pp. 307–326 (Academic Press: New York, NY).
[18] G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Adv. 1990, 46, 467.
| Crossref | GoogleScholarGoogle Scholar |
[19] G. M. Sheldrick, Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[20] C. P. Slichter, H. G. Drickamer, J. Chem. Phys. 1972, 56, 2142.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XptVWktg%3D%3D&md5=c6ae2ee2a8781f98ea954645df26c85aCAS |