Synthetic Models for Nickel–Iron Hydrogenase Featuring Redox-Active Ligands*
David Schilter A B C , Danielle L. Gray B , Amy L. Fuller B and Thomas B. Rauchfuss BA Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS),UNIST-gil 50, Ulsan 44919, Republic of Korea.
B Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA.
C Corresponding author. Email: d.schilter@gmail.com
Australian Journal of Chemistry 70(5) 505-515 https://doi.org/10.1071/CH16614
Submitted: 29 October 2016 Accepted: 15 November 2016 Published: 11 January 2017
Abstract
The nickel–iron hydrogenase enzymes efficiently and reversibly interconvert protons, electrons, and dihydrogen. These redox proteins feature iron–sulfur clusters that relay electrons to and from their active sites. Reported here are synthetic models for nickel–iron hydrogenase featuring redox-active auxiliaries that mimic the iron–sulfur cofactors. The complexes prepared are NiII(μ-H)FeIIFeII species of formula [(diphosphine)Ni(dithiolate)(μ-H)Fe(CO)2(ferrocenylphosphine)]+ or NiIIFeIFeII complexes [(diphosphine)Ni(dithiolate)Fe(CO)2(ferrocenylphosphine)]+ (diphosphine = Ph2P(CH2)2PPh2 or Cy2P(CH2)2PCy2; dithiolate = –S(CH2)3S–; ferrocenylphosphine = diphenylphosphinoferrocene, diphenylphosphinomethyl(nonamethylferrocene) or 1,1′-bis(diphenylphosphino)ferrocene). The hydride species is a catalyst for hydrogen evolution, while the latter hydride-free complexes can exist in four redox states – a feature made possible by the incorporation of the ferrocenyl groups. Mixed-valent complexes of 1,1′-bis(diphenylphosphino)ferrocene have one of the phosphine groups unbound, with these species representing advanced structural models with both a redox-active moiety (the ferrocene group) and a potential proton relay (the free phosphine) proximal to a nickel–iron dithiolate.
References
[1] W. Lubitz, H. Ogata, O. Rüdiger, E. Reijerse, Chem. Rev. 2014, 114, 4081.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks1Sisrs%3D&md5=32e621caa83677493f4171a0bcb49d4aCAS |
[2] Y. Higuchi, T. Yagi, N. Yasuoka, Structure 1997, 5, 1671.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVagtQ%3D%3D&md5=4455194828118ca36e8d4d02ab8a8d7bCAS |
[3] A. Volbeda, M.-H. Charon, C. Piras, E. C. Hatchikian, M. Frey, J. C. Fontecilla-Camps, Nature 1995, 373, 580.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsl2msLk%3D&md5=6f9a0a17e5b890c55e9a73f3d63f0b62CAS |
[4] A. Volbeda, C. Darnault, A. Parkin, F. Sargent, F. A. Armstrong, J. C. Fontecilla-Camps, Structure 2013, 21, 184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVymu7jL&md5=59f743b0cedad46d60e234cf17c57e7bCAS |
[5] A. Volbeda, L. Martin, C. Cavazza, M. Matho, B. W. Faber, W. Roseboom, S. P. J. Albracht, E. Garcin, M. Rousset, J. C. Fontecilla-Camps, J. Biol. Inorg. Chem. 2005, 10, 239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVOqsr8%3D&md5=6b58b9b957d897b565e3325e7a54d0adCAS |
[6] D. Schilter, ChemBioChem 2015, 16, 1712.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVSgtbzF&md5=993ae5c6a4b60c344ff038e8a60300adCAS |
[7] Y. Montet, P. Amara, A. Volbeda, X. Vernede, E. C. Hatchikian, M. J. Field, M. Frey, J. C. Fontecilla-Camps, Nat. Struct. Biol. 1997, 4, 523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVelurs%3D&md5=f13e4dbfc34091f6edc1587634a71f33CAS |
[8] H. Ogata, K. Nishikawa, W. Lubitz, Nature 2015, 520, 571.
| Crossref | GoogleScholarGoogle Scholar |
[9] R. M. Evans, E. J. Brooke, S. A. M. Wehlin, E. Nomerotskaia, F. Sargent, S. B. Carr, S. E. V. Phillips, F. A. Armstrong, Nat. Chem. Biol. 2015, 12, 46.
| Crossref | GoogleScholarGoogle Scholar |
[10] H. Ogata, W. Lübitz, Y. Higuchi, Dalton Trans. 2009, 7577.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFensL7M&md5=a764b7bb45935cea34b582a710ace2caCAS |
[11] C. Fichtner, C. Laurich, E. Bothe, W. Lubitz, Biochemistry 2006, 45, 9706.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFKltb8%3D&md5=6c90f27957e774cacec74f9a09f8b5e3CAS |
[12] B. L. Greene, C.-H. Wu, G. E. Vansuch, M. W. W. Adams, R. B. Dyer, Biochemistry 2016, 55, 1813.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjslCmt7k%3D&md5=e363b700fb7f638f25d40485177471a7CAS |
[13] M. Kampa, M.-E. Pandelia, W. Lubitz, M. van Gastel, F. Neese, J. Am. Chem. Soc. 2013, 135, 3915.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVCrsbg%3D&md5=97c17b36f03fb48a5b580b9d2167c057CAS |
[14] R. Hidalgo, P. A. Ash, A. J. Healy, K. A. Vincent, Angew. Chem. Int. Ed. 2015, 54, 7110.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnsFCmtb4%3D&md5=3bd423e8ee2578c3b61490d75ad386feCAS |
[15] B. J. Murphy, R. Hidalgo, M. M. Roessler, R. M. Evans, P. A. Ash, W. K. Myers, K. A. Vincent, F. A. Armstrong, J. Am. Chem. Soc. 2015, 137, 8484.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVKitL%2FK&md5=b718638384c4a8fe8f7b64b586fc639bCAS |
[16] H. Tai, K. Nishikawa, S. Inoue, Y. Higuchi, S. Hirota, J. Phys. Chem. B 2015, 119, 13668.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmvVyntbs%3D&md5=e1b906b773c3264ceb24e1cca838611dCAS |
[17] B. L. Greene, C.-H. Wu, P. M. McTernan, M. W. W. Adams, R. B. Dyer, J. Am. Chem. Soc. 2015, 137, 4558.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksl2gsLo%3D&md5=3d0362a84aab99dac597600c7318a14eCAS |
[18] J. C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet, Chem. Rev. 2007, 107, 4273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVahs77P&md5=b4f2363f9a006f38f4cf56458825059eCAS |
[19] A. K. Jones, E. Sillery, S. P. J. Albracht, F. A. Armstrong, Chem. Commun. 2002, 866.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XislSgt7o%3D&md5=9e3205348426754ece1d17f3a9cd3ac0CAS |
[20] H. R. Pershad, J. L. C. Duff, H. A. Heering, E. C. Duin, S. P. J. Albracht, F. A. Armstrong, Biochemistry 1999, 38, 8992.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVyqsLk%3D&md5=23e2f00186a90b7621a8b1a3919ad7afCAS |
[21] D. Schilter, J. M. Camara, M. T. Huynh, S. Hammes-Schiffer, T. B. Rauchfuss, Chem. Rev. 2016, 116, 8693.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVGlt77N&md5=00aed97b3387d35deb07d0cda6072c8bCAS |
[22] W. Zhu, A. C. Marr, Q. Wang, F. Neese, D. J. E. Spencer, A. J. Blake, P. A. Cooke, C. Wilson, M. Schröder, Proc. Natl. Acad. Sci. USA 2005, 102, 18280.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1ei&md5=3307eba64027eca761b45dbe3e2a37c8CAS |
[23] G. M. Chambers, M. T. Huynh, Y. Li, S. Hammes-Schiffer, T. B. Rauchfuss, E. Reijerse, W. Lubitz, Inorg. Chem. 2016, 55, 419.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XlsVKjsw%3D%3D&md5=0e53235eee381d9e0d61e398f6f40f09CAS |
[24] C. U. Perotto, G. Marshall, G. J. Jones, E. S. Davies, W. Lewis, J. McMaster, M. Schröder, Chem. Commun. 2015, 51, 16988.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsF2htrfF&md5=e163a0a3854f3c7ad0a1f4a726f4d648CAS |
[25] D. Schilter, M. J. Nilges, M. Chakrabarti, P. A. Lindahl, T. B. Rauchfuss, M. Stein, Inorg. Chem. 2012, 51, 2338.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Onu7o%3D&md5=6c117c9806255c33064023ba1656b327CAS |
[26] S. Ogo, K. Ichikawa, T. Kishima, T. Matsumoto, H. Nakai, K. Kusaka, T. Ohhara, Science 2013, 339, 682.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOksbg%3D&md5=711bad54b57e4bedf8a3ae6b798e9ab9CAS |
[27] B. C. Manor, T. B. Rauchfuss, J. Am. Chem. Soc. 2013, 135, 11895.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2mtr%2FM&md5=8ad3f0ce242d53fe5cc232db89a5da86CAS |
[28] B. E. Barton, T. B. Rauchfuss, J. Am. Chem. Soc. 2010, 132, 14877.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1GqsbrI&md5=908f7693ffaa3615a4a8c4a6abd9644bCAS |
[29] M. E. Carroll, B. E. Barton, D. L. Gray, A. E. Mack, T. B. Rauchfuss, Inorg. Chem. 2011, 50, 9554.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVyls7vF&md5=7c699231ce719d0452f9406f978c799eCAS |
[30] Y. Si, K. Charreteur, J.-F. Capon, F. Gloaguen, F. Y. Pétillon, P. Schollhammer, J. Talarmin, J. Inorg. Biochem. 2010, 104, 1038.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaqurjN&md5=4001e4110e4accb21d5c51a7b7476907CAS |
[31] D. Brazzolotto, M. Gennari, N. Queyriaux, T. R. Simmons, J. Pécaut, S. Demeshko, F. Meyer, M. Orio, V. Artero, C. Duboc, Nat. Chem. 2016, 8, 1054.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1ygsrfP&md5=feda7a905d462073736754596ccb6e57CAS |
[32] Y.-C. Liu, C.-H. Lee, G.-H. Lee, M.-H. Chiang, Eur. J. Inorg. Chem. 2011, 1155.
| Crossref | GoogleScholarGoogle Scholar |
[33] S. Ghosh, G. Hogarth, N. Hollingsworth, K. B. Holt, S. E. Kabir, B. E. Sanchez, Chem. Commun. 2014, 50, 945.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOnur7I&md5=7dcb29361bf319c5b19b96b8f5f0b11eCAS |
[34] L.-C. Song, Q.-S. Li, Z.-Y. Yang, Y.-J. Hua, H.-Z. Bian, Q.-M. Hu, Eur. J. Inorg. Chem. 2010, 1119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1eiu7k%3D&md5=f66269e37528ea3a6ffab8a5e431210dCAS |
[35] J. M. Camara, T. B. Rauchfuss, Nat. Chem. 2011, 4, 26.
| Crossref | GoogleScholarGoogle Scholar |
[36] J. C. Lansing, J. M. Camara, D. L. Gray, T. B. Rauchfuss, Organometallics 2014, 33, 5897.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVOgtrnN&md5=41b268f34ffa0d56690b0df5d2e11b58CAS |
[37] B. E. Barton, C. M. Whaley, T. B. Rauchfuss, D. L. Gray, J. Am. Chem. Soc. 2009, 131, 6942.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlKltb4%3D&md5=18733a0c2ba73826d7d86939c4a4fae8CAS |
[38] M. T. Huynh, D. Schilter, S. Hammes-Schiffer, T. B. Rauchfuss, J. Am. Chem. Soc. 2014, 136, 12385.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Kmtr%2FL&md5=bf5526d5a003893006d595647b7a272fCAS |
[39] P. S. Braterman, Metal Carbonyl Spectra 1975 (Academic Press: New York, NY).
[40] D. Schilter, T. B. Rauchfuss, M. Stein, Inorg. Chem. 2012, 51, 8931.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWhsrnM&md5=eab0f23e7740ce9aa91fb47f0a2ad611CAS |
[41] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVeitb8%3D&md5=3b734f99c0280ab7dfc3588a90c2f2daCAS |
[42] S. Onaka, T. Moriya, S. Takagi, A. Mizuno, H. Foruta, Bull. Chem. Soc. Jpn. 1992, 65, 1415.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xks12qu74%3D&md5=2add8266a2ed3c14263c2f5890ee1e1fCAS |
[43] M. E. Carroll, J. Chen, D. E. Gray, J. C. Lansing, T. B. Rauchfuss, D. Schilter, P. I. Volkers, S. R. Wilson, Organometallics 2014, 33, 858.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1emtbk%3D&md5=8ed1a69a02e172645e92d6fecb62405fCAS |
[44] O. A. Ulloa, M. T. Huynh, C. P. Richers, J. A. Bertke, M. J. Nilges, S. Hammes-Schiffer, T. B. Rauchfuss, J. Am. Chem. Soc. 2016, 138, 9234.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVektr%2FN&md5=9f0b85e1db61720cfe9f1512dd6525d7CAS |
[45] M. E. Pandelia, H. Ogata, J. J. Currell, M. Flores, W. Lubitz, Biochim. Biophys. Acta, Bioenerg. 2010, 1797, 304.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1GhsA%3D%3D&md5=169635ab00007907cdaaebf04b17442bCAS |
[46] G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Adv. 2008, A64, 112.
| Crossref | GoogleScholarGoogle Scholar |
[47] Bruker, SHELXTL v6.12 2005 (Bruker AXS, Inc.: Madison, WI).