Template Polymerization of Acrylamide in Ethanol/Water Mixtures
Jie Dong A C , Xiang’an Yue A and Jie He BA Key Laboratory of Petroleum Engineering, Ministry of Education, China University of Petroleum, Beijing 102249, China.
B College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
C Corresponding author. Email: dj_911@126.com
Australian Journal of Chemistry 69(10) 1149-1154 https://doi.org/10.1071/CH16189
Submitted: 25 March 2016 Accepted: 5 April 2016 Published: 24 May 2016
Abstract
Irregular hollow polyacrylamide (PAAm) particles with the mean diameter varying from 125 to 413 nm were prepared in ethanol/water mixtures by template polymerization using polyvinyl butyral (PVB) microspheres as the template and 2,2′-azobisisobutyronitrile (AIBN) as the initiator. The influence of the solvent composition, monomer concentration, and template concentration on the yield, molecular weight, and particle size of PAAm were investigated. Decreasing the volume ratio of ethanol to water or increasing the monomer concentration can increase the yield, molecular weight, and particle size of PAAm. The monomer concentration threshold for coagulum-free polymerization is 6 % (w/v). Although the PVB concentration does not show significant influence on the yield, molecular weight, and particle size of PAAm, keeping the PVB concentration between 0.1 and 0.3 % (w/v) is the key to forming PVB microspheres. The formation of PAAm particles is discussed based on transmission electron microscopy results, it is concluded that the shrinkage and dehydration on hollow PAAm particles, which is caused by the removal of templates, results in the formation of micro-sized irregular hollow PAAm particles.
References
[1] M. Sairam, V. R. Babu, B. Vijaya, K. Naidu, T. M. Aminabhavi, Int. J. Pharm. 2006, 320, 131.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFCqtLg%3D&md5=e99cab61bd86deab8cc38472d30589cbCAS | 16766148PubMed |
[2] S. G. Kumbar, K. S. Soppimath, T. M. Aminabhavi, J. Appl. Polym. Sci. 2003, 87, 1525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlOktQ%3D%3D&md5=1a85d0293d3951fc5acda3143dc3288bCAS |
[3] A. Lapresta-Fernández, P. J. Cywinski, A. J. Moro, G. J. Mohr, Anal. Bioanal. Chem. 2009, 395, 1821.
| Crossref | GoogleScholarGoogle Scholar | 19688343PubMed |
[4] B. Ekman, I. Sjöholm, J. Pharm. Sci. 1978, 67, 693.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXktl2jtbg%3D&md5=a2ac5dcbfdaa96eb27f4b20b3c531716CAS | 417171PubMed |
[5] C. Pinto Reis, R. J. Neufeld, A. J. Ribeiro, F. Veiga, Nanomedicine 2006, 2, 8.
[6] E. Haladjova, N. Toncheva-Moncheva, M. D. Apostolova, B. Trzebicka, A. Dworak, P. Petrov, I. Dimitrov, S. Rangelov, C. B. Tsvetanov, Biomacromolecules 2014, 15, 4377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslGqs7fJ&md5=f8c152ce678acb88efa7c6b50c29e32dCAS | 25320910PubMed |
[7] Z. Hua, M. Lin, J. Guo, F. Xu, Z. Li, M. Li, J. Petrol. Sci. Eng. 2013, 105, 70.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFems70%3D&md5=5b7c18d2b90bf0526ede78b2ce72ba51CAS |
[8] C. Yao, G. Lei, L. Li, X. Gao, J. Appl. Polym. Sci. 2013, 127, 3910.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsVGlurk%3D&md5=c0151d2f9a6850da117d4e903f66de99CAS |
[9] C. Yao, G. Lei, L. Li, X. Gao, Energy Fuels 2012, 26, 5092.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVKlur0%3D&md5=832c514b48b9d61b4dbccfd06ec0206bCAS |
[10] C. Yao, G. Lei, X. Gao, L. Li, J. Appl. Polym. Sci. 2013, 130, 1124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvFWntLg%3D&md5=b86f897cdfa1ed4fb52fb9e62f187b68CAS |
[11] B. Ray, B. M. Mandal, Langmuir 1997, 13, 2191.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitVOlsL8%3D&md5=3c28daa18f06f0b964dcdcfb0e229988CAS |
[12] Q. Ye, Z. Zhang, H. Jia, W. He, X. Ge, J. Colloid Interface Sci. 2002, 253, 279.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnt1OhsL4%3D&md5=fb4ca6589084285100438aa8ea1d93b2CAS | 16290860PubMed |
[13] Q. Ye, Z. Zhang, X. Ge, Polym. Int. 2003, 52, 707.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvVeqt7Y%3D&md5=1a47698381ff697daaf8039916557dd6CAS |
[14] Y. He, G. Li, F. Yang, X. Yu, Y. Cui, F. Ren, J. Appl. Polym. Sci. 2007, 104, 4060.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFCgtr0%3D&md5=940a97bbc51d7f0345840d69e94240e0CAS |
[15] J. M. Jin, S. Yang, S. E. Shim, S. Choe, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFeitL3M&md5=8e3a35b34bcc6147e369ab75084ef457CAS |
[16] J. M. Jin, S. Yang, S.-T. Han, S. Choe, J. Ind. Eng. Chem. 2006, 12, 268.
| 1:CAS:528:DC%2BD28Xjt1Kiuro%3D&md5=afa516f7db11cf8a95e2a5ce9f14ee8cCAS |
[17] H. Ni, H. Kawaguchi, J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 2823.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlCqsrg%3D&md5=37a6ae2b23e58a35167ea364a026f5b8CAS |
[18] H. Ni, H. Kawaguchi, J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 2833.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlCqsrk%3D&md5=cda7cc29176b1bd58dd5094282f46994CAS |
[19] E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, H. Möhwald, Angew. Chem. Int. Ed. 1998, 37, 2201.
| Crossref | GoogleScholarGoogle Scholar |
[20] Y. Wang, Y. Zhang, W. Du, C. Wu, J. Zhao, J. Colloid Interface Sci. 2009, 334, 153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFGit7g%3D&md5=89341d0f9c82b7f81e879419f8bf40b9CAS | 19394956PubMed |
[21] G. L. Li, H. Möhwald, D. G. Shchukin, Chem. Soc. Rev. 2013, 42, 3628.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFemsLg%3D&md5=f857252e4c89f6bd60b592068eea441bCAS | 23412474PubMed |
[22] Z. Feng, Z. Wang, C. Gao, J. Shen, Chem. Mater. 2007, 19, 4648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptFSmsbo%3D&md5=241d964df94e048dd672f761bd119117CAS |
[23] W. Liu, G. Chen, G. He, Z. He, Z. Qian, J. Mater. Sci. 2011, 46, 6758.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1Grt7g%3D&md5=02b37f648e2beb391efa1441a400492cCAS |
[24] M. Yang, J. Ma, C. L. Zhang, Z. Z. Yang, Y. F. Lu, Angew. Chem. Int. Ed. 2005, 44, 6727.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SnsLfK&md5=230fd4fefd9db1c38f840d87a8a37721CAS |
[25] M. Yang, J. Ma, Z. W. Niu, X. Dong, H. F. Xu, Z. K. Meng, Z. G. Jin, Y. F. Lu, Z. B. Hu, Z. Z. Yang, Adv. Funct. Mater. 2005, 15, 1523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCgtbrO&md5=47b5bb2616019d35de47c568bd27539eCAS |
[26] G. Li, X. Yang, B. Wang, J. Wang, X. Yang, Polymer 2008, 49, 3436.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos12ks78%3D&md5=85b659aba104f58d3c5517bf81b5288bCAS |
[27] X. Yang, L. Chen, B. Huang, F. Bai, X. Yang, Polymer 2009, 50, 3556.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslGgtbk%3D&md5=b9f7b2358bf20da610a709ad7fe1b930CAS |
[28] J. S. Downey, R. S. Frank, W. Li, H. D. H. Stöver, Macromolecules 1999, 32, 2838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitFyiu7w%3D&md5=988dfbdc9f365b1512882a482555e836CAS |