Ultrasonic Synthesis and Properties of Sodium Lignosulfonate-grafted Poly(Acrylic Acid-co-Vinyl Alcohol) Composite Superabsorbent Polymer
Chen Hao A B , Jun Li A , Qiang He A , Zilong Zhou A , Xiaowei Guo A , Xiaohong Wang A B , Sijia Gao A and Yike Zhang AA School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
B Corresponding authors. Email: xhwang@ujs.edu.cn; chhao@ujs.edu.cn
Australian Journal of Chemistry 69(10) 1155-1161 https://doi.org/10.1071/CH16064
Submitted: 3 February 2016 Accepted: 5 April 2016 Published: 17 May 2016
Abstract
In this paper, a green and high-efficiency method (ultrasound synthesis) has been applied in the preparation of a sodium lignosulfonate-grafted poly(acrylic acid-co-vinyl alcohol) superabsorbent polymer (SL-P(AA-co-VA)). By Fourier-transform infrared spectroscopy, scanning electron microscopy, and thermogravimetry–differential scanning calorimetry, the successful preparation was confirmed. An L16(4)5 orthogonal experiment was carried out to optimize synthetic conditions for SL-P(AA-co-VA). Under the optimized synthetic conditions, maximum water absorbency (949 g g–1) and physiological saline absorbency (62 g g–1) were achieved. Adjusting pH reduces the water absorbency of SL-P(AA-co-VA), as does the presence of metal ions. However, a rise in temperature does not have a significant influence on it. In general, both the water absorbency and physiological saline absorbency of SL-P(AA-co-VA) were significantly improved versus P(AA-co-VA) superabsorbent.
References
[1] J. S. Bao, S. Chen, B. Z. Wu, M. Ma, Y. Q. Shi, X. J. Wang, J. Appl. Polym. Sci. 2015, 132, 41298.[2] X. Y. Zhang, X. P. Wang, S. S. Zhang, W. Wu, J. Appl. Polym. Sci. 2015, 132, 41243.
[3] A. Rashidzadeh, A. Olad, Carbohydr. Polym. 2014, 114, 269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVKnsbzL&md5=c0b4b9e0227162ce9e0f1dbe1a1f7baaCAS | 25263891PubMed |
[4] H. C. Ge, S. K. Wang, Carbohydr. Polym. 2014, 113, 296.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlWjtb%2FM&md5=fc254388310f5a292982dc2c98c36fbeCAS |
[5] K. S. V. Poorna Chandrika, A. Singh, D. J. Sarkar, A. Rathore, A. Kumar, J. Appl. Polym. Sci. 2014, 131, 41060.
[6] P. C. Parvathy, A. N. Jyothi, K. S. John, J. Sreekumar, Clean: Soil, Air, Water 2014, 42, 1610.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtFalurw%3D&md5=c6e4cc189be248946554b7c068aba7e9CAS |
[7] R. Liang, H. B. Yuan, G. X. Xi, Q. X. Zhou, Carbohydr. Polym. 2009, 77, 181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVKisrk%3D&md5=9d556b06b07643e69a84ab9a38ee52acCAS |
[8] B. Urbano, B. L. Rivas, Polym. Int. 2012, 61, 23.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1WjsrrO&md5=e86b44a50895d8a0d6472620a6a7deddCAS |
[9] H. Beushausen, M. Gillmer, Cement Concr. Compos. 2014, 52, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKhtrvK&md5=8b0e7d256d4106fb6e89f3bcb7358ee6CAS |
[10] J. H. Wu, Y. L. Wei, J. M. Lin, S. B. Lin, Polymer 2003, 44, 6513.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1ymt7s%3D&md5=410c72d716114165f2eeb3ff8318d42bCAS |
[11] D. W. Lim, K. G. Song, K. J. Yoon, S. W. Ko, Eur. Polym. J. 2002, 38, 579.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlKk&md5=4cff34b59ae062be20cb11604e97ebecCAS |
[12] M. Z. Liu, R. Liang, F. L. Zhan, Z. Liu, A. Z. Niu, Polym. Int. 2007, 56, 729.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslSrsr0%3D&md5=ecdb0f2aabd6300d1e1fb9582cc88b27CAS |
[13] A. Amiri, M. Shanbedi, G. Ahmadi, H. Eshghi, B. T. Chew, S. N. Kazi, Colloids Surf. A Physicochem. Eng. Asp. 2015, 487, 131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1aktrbN&md5=199b9dd8898b1feac211a27120835ef5CAS |
[14] E. C. Border, V. L. Blair, P. C. Andrews, Aust. J. Chem. 2015, 68, 844.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotFWkuro%3D&md5=caedbc6ea86ed15db779823c52922fcaCAS |
[15] H. Naeimi, L. Moradi, Catal. Commun. 2006, 7, 1067.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFWiur3F&md5=2bb5ceb130b37e7cbcdb2e02e025325eCAS |
[16] J. M. J. Paulusse, R. P. Sijbesma, J. Polym. Sci. A Polym. Chem. 2006, 44, 5445.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCjtrnN&md5=2b8a95ea4bf56ad9d72c59666d64e7caCAS |
[17] Y. Z. Chen, H. L. Li, J. Polym. Sci., B, Polym. Phys. 2007, 45, 1226.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFart7g%3D&md5=f72e39df7597b9f4602966db9fde9e9bCAS |
[18] K. A. Jung, S. H. Woob, S. R. Lim, J. M. Park, Chem. Eng. J. 2015, 259, 107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlartLbL&md5=28e82eeca56b1198259369bd7f00d554CAS |
[19] J. Schellekens, P. Buurman, T. Kuyper, G. D. Abbott, X. P. Pombal, A. M. Cortizas, Geoderma 2015, 237–238, 270.
| Crossref | GoogleScholarGoogle Scholar |
[20] J. Jin, B. J. Yu, Z. Q. Shi, C. Y. Wang, C. B. Chong, J. Power Sources 2014, 272, 800.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCnsr3F&md5=505e44b5c2d3670aacaa834d35920d4fCAS |
[21] Q. X. Yao, J. J. Xie, J. X. Liu, H. M. Kang, Y. Liu, J. Polym. Res. 2014, 21, 465.
| Crossref | GoogleScholarGoogle Scholar |
[22] A. Thiel, W. Braun, M. G. Cary, J. A. Engelhardt, D. G. Goodman, W. C. Hall, A. Romeike, J. M. Ward, Regul. Toxicol. Pharmacol. 2013, 66, 286.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOju7rN&md5=7288c632a9e89814282a6ef8fa0d919fCAS | 23665266PubMed |
[23] R. N. Flores, A. X. Castro, M. E. L. Caballero, P. Montero, M. C. G. Guillén, Innov. Food Sci. Emerg. 2013, 19, 95.
[24] G. J. Gupta1, N. Birbilis, A. S. Khanna, Int. J. Electrochem. Sci. 2013, 8, 3132.
[25] D. Ji, Z. Y. Luo, M. He, Y. J. Shi, X. L. Gu, Cement Concr. Res. 2012, 42, 1199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovVamsbw%3D&md5=85ba48134a7d6d7abef050a123e02ac1CAS |
[26] A. Noorjahan, P. Choi, Chem. Eng. Sci. 2015, 121, 258.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ChurrF&md5=c974336fb13c0cb584a4e4aef8686fe5CAS |
[27] J. M. Gohil, D. G. Karamanev, Chem. Eng. J. 2015, 259, 25.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlaqsr7N&md5=e3158c6aa2c3e166d0f4c3c9a85eb6cdCAS |
[28] A. A. Basfar, S. Lotfy, Radiat. Phys. Chem. 2015, 106, 376.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFKqt7vJ&md5=3efdbc7d7f681f0cc30fe6bc317aab16CAS |
[29] J. M. Schliesser, S. J. Smith, G. S. Li, L. P. Li, T. F. Walker, T. Parry, J. B. Goates, B. F. Woodfield, J. Chem. Thermodyn. 2015, 81, 298.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGnur7E&md5=9591025bbbd119c5aa6a1b7a87468d17CAS |
[30] G. Durán-Jiménez, V. H. Montoya, M. A. M. Morán, A. B. Petriciolet, N. A. R. Vázquez, Microporous Mesoporous Mater. 2014, 199, 99.
| Crossref | GoogleScholarGoogle Scholar |
[31] M. Kačuráková, P. Capeka, V. Sasinkova, N. Wellner, A. Ebringerova, Carbohydr. Polym. 2000, 43, 195.
| Crossref | GoogleScholarGoogle Scholar |
[32] F. Wu, Y. Zhang, L. Liu, J. Yao, Carbohydr. Polym. 2012, 87, 2519.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OmurrP&md5=8b8791d68df5229c7f461f5d4af4dfc3CAS |
[33] X. H. Wang, Y. K. Zhang, C. Hao, X. H. Dai, F. F. Zhu, C. W. Ge, New J. Chem. 2014, 38, 6057.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1ehs7nO&md5=05f574e19818834b53a0fcd7b93eb6e6CAS |
[34] P. J. Flory, Principles of Polymer Chemistry 1953 (Cornell University Press: Ithaca, NY).
[35] F. Horkay, I. Tasaki, P. J. Basser, Biomacromolecules 2000, 1, 84.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlKrsw%3D%3D&md5=dad2e5a62e77b9a46f4f305be3c975fcCAS | 11709847PubMed |