Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Prodrug Micelles Based on Norbornene-Functional Poly(lactide)s Backbone for Redox-Responsive Release of Paclitaxel

Ji Wang A , Jing Yan A , Huicong Zhou A , Haikang Huang A , Xuefei Zhang A B C and Haoyu Tang A B C
+ Author Affiliations
- Author Affiliations

A College of Chemistry, Xiangtan University, Xiangtan, 411105, Hunan Province, China.

B Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, and Universities of Hunan Province, Xiangtan, 411105, China.

C Corresponding authors. Email: zxf7515@163.com; htang@xtu.edu.cn

Australian Journal of Chemistry 69(10) 1140-1148 https://doi.org/10.1071/CH16100
Submitted: 20 February 2016  Accepted: 31 March 2016   Published: 3 May 2016

Abstract

Norbornene-functional poly(lactide)s backbone-based amphiphilic copolymer, P(LA-g-mOEG)-b-P(LA-SS-COOH), was synthesized as the polymeric scaffold and paclitaxel (PTX) was directly conjugated to the carboxyl groups of the amphiphilic copolymer to obtain redox-responsive P(LA-g-mOEG)-b-P(LA-SS-PTX) prodrugs. The dynamic light scattering and transmission electron microscopy analyses showed that P(LA-g-mOEG)-b-P(LA-SS-PTX) self-assembled into prodrug micelles with a diameter of 60–70 nm and a low polydispersity in aqueous solution. Remarkably, in vitro release studies revealed that 80 % of PTX was released in 72 h under a reductive environment, whereas only 23 % of PTX was released in 72 h under non-reductive conditions. In addition, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays showed that P(LA-g-mOEG)-b-P(LA-SS-PTX) prodrug micelles retained high anti-tumour activity while polymer carriers were non-toxic up to a tested concentration of 1.0 mg mL–1. These redox-responsive prodrug micelles have tremendous potential for anti-tumour drug delivery.


References

[1]  D. G. van der Poll, H. M. Kieler-Ferguson, W. C. Floyd, S. J. Guillaudeu, K. Jerger, F. C. Szoka, J. M. Frechet, Bioconjugate Chem. 2010, 21, 764.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFKjtLc%3D&md5=c537662584b96bda544e07e07380af40CAS |

[2]  H. J. Gao, T. J. Cheng, J. F. Liu, J. J. Liu, C. H. Yang, L. P. Chu, Y. M. Zhang, R. J. Ma, L. Q. Shi, Biomacromolecules 2014, 15, 3634.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtl2gtLfP&md5=afb322b9170b3aefca523fa03a9cb8a4CAS |

[3]  J. Chen, X. Z. Qiu, J. Ouyang, J. Kong, W. Zhong, M. M. Q. Xing, Biomacromolecules 2011, 12, 3601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSks7rO&md5=ad14ff2bae2b4cafd1a0d42c0084c849CAS | 21853982PubMed |

[4]  Y. Huang, Z. Tang, X. Zhang, H. Yu, H. Sun, X. Pang, X. Chen, Biomacromolecules 2013, 14, 2023.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVeqsbw%3D&md5=3e94785c8f58b5360620b81790cd45feCAS | 23662624PubMed |

[5]  X. Hu, S. Liu, Y. B. Huang, X. S. Chen, X. B. Jing, Biomacromolecules 2010, 11, 2094.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVWiu7Y%3D&md5=932cf68675379e2479a927f51409151eCAS | 20604578PubMed |

[6]  J. Zou, G. Jafr, E. Themistou, Y. Yap, Z. A. P. Wintrob, P. Alexandridis, C. Cheng, Chem. Commun. 2011, 47, 4493.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFSrtb8%3D&md5=0dbe89ef5ec8cb8c289174d7ffc6c01cCAS |

[7]  X. J. Chen, S. S. Parelkar, E. Henchey, S. Schneider, T. Emrick, Bioconjugate Chem. 2012, 23, 1753.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOntLvK&md5=c7652f563cb57772bd6858e764ba2a76CAS |

[8]  T. Etrych, V. Šubr, R. Laga, B. Ríhová, K. Ulbrich, Eur. J. Pharm. Sci. 2014, 58, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotFGqsrs%3D&md5=fae8978a6643e2f1779e4dbfc3a64b4dCAS | 24632485PubMed |

[9]  X. H. Wang, G. Zhao, S. Van, N. Jiang, L. Yu, D. Vera, S. B. Howell, Cancer Chemother. Pharmacol. 2010, 65, 515.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1ymsA%3D%3D&md5=c49faf6a47a960e99bf92898aab885ebCAS |

[10]  F. X. Zhan, W. Chen, Z. J. Wang, W. T. Lu, R. Cheng, C. Deng, Z. Y. Zhong, Biomacromolecules. 2011, 12, 3612.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2ktL3M&md5=59fc9f42d345d16e1879bf02257ec147CAS |

[11]  Y. D. Gu, Y. N. Zhong, F. H. Meng, R. Cheng, C. Deng, Z. Y. Zhong, Biomacromolecules 2013, 14, 2772.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFGktrw%3D&md5=3bd64ec461a6dc827ad48a8aecbc30dfCAS |

[12]  Y. N. Zhong, W. J. Yang, H. L. Sun, R. Cheng, F. H. Meng, C. Deng, Z. Y. Zhong, Biomacromolecules 2013, 14, 3723.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGnur3E&md5=9796b5ebdf21e03159406d6dc7f1b3fdCAS |

[13]  Z. G. Xu, S. Y. Liu, Y. J. Kang, M. F. Wang, ACS Biomater. Sci. Eng. 2015, 1, 585.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXoslKkurc%3D&md5=39574dea244d25feef5436309cbfa452CAS |

[14]  L. Li, Q. Q. Yang, Z. Zhou, J. J. Zhong, Huang, Biomaterials 2014, 35, 5171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltlejtr8%3D&md5=c4ab62c9d03ac5accc9dcf7284f6a6e3CAS | 24702960PubMed |

[15]  E. Jäger, A. Jäger, P. Chytil, T. Etrych, B. Říhová, F. C. Giacomelli, P. Štěpánek, K. Ulbrich, J. Controlled Release 2013, 165, 153.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  V. Rao N, S. R. Mane, A. Kishore, J. D. Sarma, R. Shunmugam, Biomacromolecules 2012, 13, 221.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSjsLvL&md5=5db9adc1fa2be7a98856cc73a7545166CAS | 22107051PubMed |

[17]  C. Y. Liu, J. Yuan, X. Luo, M. H. Chen, Z. J. Chen, Y. C. Zhao, X. H. Li, Mol. Pharmaceutics 2014, 11, 4258.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFOrtb3E&md5=ff4c0cf37108acc45447ae7f10128f8eCAS |

[18]  S. X. Lv, Z. H. Tang, D. W. Zhang, W. T. Song, M. Q. Li, J. Lin, H. Y. Liu, X. S. Chen, J. Controled Release 2014, 194, 220.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCns7%2FJ&md5=6cf9555e78ce793b8ccabc23803cb75bCAS |

[19]  L. L. Chang, L. D. Deng, W. W. Wang, Z. Lv, F. Q. Hu, A. J. Dong, J. H. Zhang, Biomacromolecules 2012, 13, 3301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ymsr3P&md5=3b5f0d0b3ee485cab08f06a77382690cCAS |

[20]  M. Hrubý, C. Konak, K. Ulbrich, J. Controlled Release 2005, 103, 137.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  Y. Lee, S. Y. Park, H. Mok, T. G. Park, Bioconjugate Chem. 2008, 19, 525.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVyq&md5=c5cb8191ccf7e47359d36dc35c35f592CAS |

[22]  L. Zhou, R. Cheng, H. Q. Tao, S. B. Ma, Z. Liu, Z. Y. Zhong, Biomacromolecules 2011, 12, 1460.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFGiu70%3D&md5=e55facf626cde3fe4bb570f9b94a206fCAS | 21332185PubMed |

[23]  X. Q. Li, H. Y. Wen, H. Q. Dong, W. M. Xue, G. M. Pauletti, X. J. Cai, Y. Y. Li, Chem. Commun. 2011, 47, 8647.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVOqt78%3D&md5=b2fae1b29d03fa950e3c112d88c93d4cCAS |

[24]  A. X. Gao, L. Y. Liao, J. A. Johnson, ACS Macro Lett. 2014, 3, 854.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGms7%2FJ&md5=bc6049bb168cddaa879fdb6a77351ac9CAS | 25243099PubMed |

[25]  Y. Shao, Y. G. Jia, C. Y. Shi, J. T. Luo, X. X. Zhu, Biomacromolecules 2014, 15, 1837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVWhurw%3D&md5=470e687fc32857a8596ed6337f16b02bCAS | 24725005PubMed |

[26]  D. X. Lu, X. T. Wen, J. Liang, X. D. Zhang, Y. J. Fan, Chin. J. Polym. Sci. 2008, 26, 369.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  E. Fleige, M. A. Quadir, R ., Haag, Adv. Drug Deliv. Rev. 2012, 64, 866.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1OqurY%3D&md5=0af30eed52c88dd0c9ed441257d9ba12CAS | 22349241PubMed |

[28]  D. Yang, W. L. Chen, J. H. Hu, J. Phys. Chem. B 2014, 118, 12311.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1OitLvO&md5=7db359f2d231a0b23557294c91ba2512CAS | 25320865PubMed |

[29]  N. J. Song, M. M. Ding, Z. C. Pan, J. H. Li, L. J. Zhou, H. Tan, Q. Fu, Biomacromolecules 2013, 14, 4407.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGmt73L&md5=2bf3b3b5e58466654ef2d30133d51c3fCAS |

[30]  H. Wang, L. Tang, C. L. Tu, Z. Y. Song, Q. Yin, L. C. Yin, J. J. Cheng, Biomacromolecules 2013, 14, 3706.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlOqu77O&md5=17e025b3d9b4f96315c6f767bafbc8bbCAS | 24003893PubMed |

[31]  X. Q. Li, H. Y. Wen, H. Q. Dong, W. M. Xue, G. M. Pauletti, X. J. Cai, W. J. Xia, D. L Shi, Y. Y. Li, Chem. Commun. 2011, 47, 8647.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVOqt78%3D&md5=b2fae1b29d03fa950e3c112d88c93d4cCAS |

[32]  W. Chen, Y. Zou, J. Jia, F. H. Meng, R. Cheng, C. Deng, Z. Y. Zhong, Macromolecules 2013, 46, 699.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGqurY%3D&md5=5e02fb7ed05e6230a3dbba4bfc1c6997CAS |

[33]  Y. L. Bao, Y. Y. Guo, X. T. Zhuang, D. Li, B. Cheng, S. W. Tan, Z. P. Zhang, Mol. Pharmaceutics. 2014, 11, 3196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht12gu7rM&md5=e5672f17d158f2e5111d105ac9a09a5eCAS |

[34]  F. Jing, M. A. Hillmyer, J. Am. Chem. Soc. 2008, 130, 13826.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKqsrnP&md5=c40c3349594821ae7af29a1f48bedfc9CAS | 18821759PubMed |

[35]  J. A. Castillo, D. E. Borchmann, A. Y. Cheng, Y. F. Wang, C. H. Hu, A. J. García, M. Weck, Macromolecules 2012, 45, 62.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1aqu7jL&md5=e23472683261a3d85703b1769a89534dCAS | 22279245PubMed |

[36]  A. W. Du, H. Lu, M. H. Stenzel, Biomacromolecules 2015, 16, 1470.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmt1Wns74%3D&md5=184bbc975ab7900ac402df53f93727c0CAS | 25857405PubMed |

[37]  J. Wang, H. J. Sun, D. S. Li, J. Yuan, X. F. Zhang, H. Y. Tang, Aust. J. Chem 2015, 68, 1136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFaisLzE&md5=4a9f52c6ace8fed61cc8bb5ecf60f6fcCAS |