The Effects of SiO2 and CeO2 Addition on the Performances of MnOx/TiO2 Catalysts
Juhua Luo A C , Hongkai Mao A B , Xu Wang A and Wei Yao AA School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
B School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
C Corresponding author. Email: luojuhua@163.com
Australian Journal of Chemistry 69(10) 1180-1185 https://doi.org/10.1071/CH16060
Submitted: 2 February 2016 Accepted: 18 April 2016 Published: 25 May 2016
Abstract
A TiO2-SiO2 mixed oxide was obtained by a co-precipitation method. MnOx-CeO2/TiO2-SiO2 were prepared by an impregnation method and their activity towards the selective catalytic reduction of NO with NH3 at low temperature were evaluated. Compared with pure TiO2, TiO2-SiO2 exhibited an evidently larger surface area and pore volume, and a smaller average pore diameter with narrow distribution. The NO conversion of the MnOx/TiO2-SiO2 catalyst could be improved by the addition of an appropriate amount of CeO2 in the temperature range of 100–180°C. MnOx-CeO2/TiO2-SiO2 with 10 wt-% CeO2 showed the highest activity with 96 % NO conversion at 180°C.
References
[1] S. K. Wu, H. L. Li, L. Q. Li, C. Y. Wu, J. Y. Zhang, K. M. Shih, Fuel 2015, 159, 876.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFyqu7bM&md5=1be81cc5b15496b5eceb087b58300b92CAS |
[2] W. Z. Song, H. Y. Wu, J. C. Wang, Y. F. Lin, J. B. Song, Y. Xie, L. Li, K. Y. Shi, Aust. J. Chem. 2015, 68, 1569.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1WqsrvJ&md5=8f96d172e420e16510fbe20c29f9aba6CAS |
[3] A. Scheuer, O. Hirsch, R. Hayes, H. Vogel, M. Votsmeier, Catal. Today 2011, 175, 141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiur7J&md5=7bbbac463a246c8a64af053206997051CAS |
[4] X. Y. Wang, W. Wen, J. X. Mi, X. X. Li, R. H. Wang, Appl. Catal. B 2015, 176-177, 454.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmslGht7w%3D&md5=7844383127334d19b9d11b2ead32c8afCAS |
[5] P. G. W. A. Kompio, A. Brückner, F. Hipler, G. Auer, E. Löffler, W. Grünert, J. Catal. 2012, 286, 237.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkslOjtA%3D%3D&md5=b6617ba416aff5b4ffe682edb86372a1CAS |
[6] C. K. Seo, B. Choi, J. Ind. Eng. Chem. 2015, 25, 239.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFSms7%2FK&md5=a61cab95fb80dcbf77007929df21f02aCAS |
[7] C. T. Chen, W. L. Tan, J. Taiwan Inst. Chem. Eng. 2012, 43, 409.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt12nt78%3D&md5=4c363eccb4a043317d712aa297156c2fCAS |
[8] X. M. Wang, X. Y. Li, Q. D. Zhao, W. B. Sun, M. Tade, S. M. Liu, Chem. Eng. J. 2016, 288, 216.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVSgsbrE&md5=4e88bc46f5007e8e5715f56fca6fd241CAS |
[9] T. T. Gu, R. B. Jin, Y. Liu, H. F. Liu, X. L. Weng, Z. B. Wu, Appl. Catal. B 2013, 129, 30.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKmt7vP&md5=2c14e27b9956e6754f85e935df63090dCAS |
[10] N. Z. Yang, R. T. Guo, W. G. Pan, Q. L. Chen, Q. S. Wang, C. Z. Lu, Fuel 2016, 169, 87.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVeisbzO&md5=45a46a8055e67928954d33539a62c2edCAS |
[11] D. A. Pena, B. S. Uphade, P. G. Smirniotis, J. Catal. 2004, 221, 421.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVymsA%3D%3D&md5=ea4e5d5acb02670f5defe87547ec351fCAS |
[12] S. S. R. Putluru, L. Schill, A. D. Jensen, B. Siret, F. Tabaries, R. Fehrmann, Appl. Catal. B 2015, 165, 628.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVygsbnL&md5=4e74d1c67198db648080bed99c7124aeCAS |
[13] B. X. Shen, X. P. Zhang, H. Q. Ma, Y. Yao, T. Liu, J. Environ. Sci. (China) 2013, 25, 791.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ShtbrN&md5=89176dace2ec9b79e245abb7c624932cCAS |
[14] X. N. Lu, C. Y. Song, S. H. Jia, Z. S. Tong, X. L. Tang, Y. X. Teng, Chem. Eng. J. 2015, 260, 776.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1ahsLbF&md5=e7cd774cd06477d36e8c21f6d2e52987CAS |
[15] L. Qu, C. T. Li, G. G. Zeng, M. Y. Zhang, M. F. Fu, J. F. Ma, F. M. Zhan, D. Q. Luo, Chem. Eng. J. 2014, 242, 76.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXislKntrc%3D&md5=a844dc12acf2ea26eb8bed04de8c6888CAS |
[16] R. B. Jin, Y. Liu, Z. B. Wu, H. Q. Wang, T. T. Gu, Chemosphere 2010, 78, 1160.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslWqsL8%3D&md5=54d898f5f7f9c3106ff9e78a7deb3b5bCAS |
[17] W. R. Zhao, Y. P. Tang, Y. Wan, L. Li, S. Yao, X. W. Li, J. L. Gu, Y. S. Li, J. L. Shi, J. Hazard. Mater. 2014, 278, 350.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1WjsLjL&md5=38b201d1ca9f4a00dc2e3abce3b9e16eCAS |
[18] P. R. Ettireddy, N. Ettireddy, S. Mamedov, P. Boolchand, P. G. Smirniotis, Appl. Catal. B 2007, 76, 123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKlt7nP&md5=e8b03348cd8649fd92c3c9ea5c20e183CAS |
[19] Z. F. Liu, J. Tabora, R. J. Davis, J. Catal. 1994, 149, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFCjsLs%3D&md5=b3be688a515ede9991c7919e4905bb65CAS |
[20] Y. Peng, C. X. Liu, X. Y. Zhang, J. H. Li, Appl. Catal. B 2013, 140–141, 276.
| Crossref | GoogleScholarGoogle Scholar |
[21] M. Pourkhalil, A. Z. Moghaddam, A. Rashidi, J. Towfighi, Y. Mortazavi, Appl. Surf. Sci. 2013, 279, 250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFGktrw%3D&md5=96f2064e6cca3c9dc797c71aeaa0a26dCAS |
[22] T. Boningari, D. K. Pappas, P. R. Ettireddy, A. Kotrba, P. G. Smirniotis, Ind. Eng. Chem. Res. 2015, 54, 2261.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitlWmu7c%3D&md5=18ad39cbda5d540dc1d3bb9bd09a7eccCAS |
[23] H. Benesi, J. Phys. Chem. C 1957, 61, 970.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXkt1M%3D&md5=137d77479566be600f0c57232f82e3ccCAS |
[24] H. M. Liu, D. Liu, P. Yuan, D. Y. Tan, J. G. Cai, H. P. He, J. X. Zhu, Z. G. Song, Phys. Chem. Miner. 2013, 40, 479.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFentbk%3D&md5=a4c7f5e39718a54f0bba292247340b78CAS |
[25] S. M. Saqer, D. I. Kondarides, X. E. Verykios, Appl. Catal. B 2011, 103, 275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFaktLg%3D&md5=210789be315b91a92ee8f6844423ad59CAS |
[26] M. Kobayashi, R. Kuma, S. Masaki, N. Sugishima, Appl. Catal. B 2005, 60, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGrsrzP&md5=211fbff7aa21b271806072758885f8a0CAS |
[27] B. X. Shen, Y. Yao, J. H. Chen, X. P. Zhang, Microporous Mesoporous Mater. 2013, 180, 262.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlOrtrbE&md5=e008c16a77af59bbd0cf762af1d18630CAS |
[28] S. M. Lee, K. H. Park, S. C. Hong, Chem. Eng. J. 2012, 195–196, 323.
| Crossref | GoogleScholarGoogle Scholar |
[29] B. X. Shen, Y. Yao, H. Q. Ma, T. Liu, Chin. J. Catal. 2011, 32, 1803.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ygtr4%3D&md5=1b8c9441da80f4fd4d89007869307359CAS |
[30] F. Babou, G. Coudurier, J. Vedrine, J. Catal. 1995, 152, 341.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksl2jur4%3D&md5=ddf8c09e0df5b0d3f9d8a810126742dfCAS |
[31] Y. M. Wang, S. W. Liu, Z. L. Xiu, X. B. Jiao, X. P. Cui, J. Pan, Mater. Lett. 2006, 60, 974.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1Cr&md5=2af8c1c0b780373badcba5f74af33909CAS |
[32] Z. B. Wu, R. B. Jin, Y. Liu, H. Q. Wang, Catal. Commun. 2008, 9, 2217.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFSruro%3D&md5=ff269e1d43b05042f9515ef12789eb10CAS |
[33] C. Wang, L. Sun, Q. Q. Cao, B. Q. Hu, Z. W. Huang, X. F. Tang, Appl. Catal. B 2011, 101, 598.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WjurnP&md5=b9612f5a462996948848632dd4f79fefCAS |
[34] Z. B. Wu, B. Q. Jiang, Y. Liu, H. Q. Wang, R. B. Jin, Environ. Sci. Technol. 2007, 41, 5812.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslGqsLs%3D&md5=67e6cd1d1674e04aa5ea5a2f92378a0dCAS |
[35] Y. Chi, S. S. Chuang, Catal. Today 2000, 62, 303.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFSks7s%3D&md5=50b2b31d33597c3c4c709f66b7d9b943CAS |
[36] S. Roy, B. Viswanath, M. S. Hegde, G. Madras, J. Phys. Chem. C 2008, 112, 6002.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslahtLg%3D&md5=730827dfa7b70a6068b2f17bf9d6c037CAS |
[37] X. D. Wu, Z. C. Si, G. Li, D. Weng, Z. R. Ma, J. Rare Earths 2011, 29, 64.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFSmtbk%3D&md5=88c2c52185f511eb69244bb346937fecCAS |