Metallosupramolecular Chemistry of AgI Complexes with Azobis(2-pyridine) and its Derivatives
Siji Rajan A , F. Richard Keene B and Peter J. Steel A CA Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand.
B Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
C Corresponding author. Email: peter.steel@canterbury.ac.nz
Australian Journal of Chemistry 69(6) 612-617 https://doi.org/10.1071/CH15560
Submitted: 10 September 2015 Accepted: 6 October 2015 Published: 30 October 2015
Abstract
Reactions of three azobis(2-pyridines) with silver salts lead to 1D coordination polymers whose structures have been determined by single crystal X-ray crystallography. The azobis(2-pyridines) consistently act as di-bidentate ligands that bridge silver atoms separated by distances ranging from 5.49 to 5.82 Å. Two of the coordination polymers consist of chains in which consecutive bridging ligands are orthogonally oriented. The other polymer has a considerably more complicated structure due to the more intimate involvement of the trifluoroacetate counteranions, which also act as bridges between silver centres.
References
[1] (a) J. Burgess, J. R. A. Cottam, P. J. Steel, Aust. J. Chem. 2006, 59, 295.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFSrtrg%3D&md5=a839a33a1887ea84af03331e9b1dbaebCAS |
(b) A. N. Khlobystov, A. J. Blake, N. R. Champness, D. A. Lemenovskii, A. G. Majouga, N. V. Zyk, M. Schröder, Coord. Chem. Rev. 2001, 222, 155.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. F. Swiegers, T. J. Malefetse, Coord. Chem. Rev. 2002, 225, 91.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. Thanasekaran, R. T. Liao, Y.-H. Liu, T. Rajendran, S. Rajagopal, K. L. Lu, Coord. Chem. Rev. 2005, 249, 1085.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Fujita, K. Umemoto, M. Yoshizawa, N. Fujita, T. Kusukawa, K. Biradha, Chem. Commun. 2001, 509.
| Crossref | GoogleScholarGoogle Scholar |
(f) P. J. Steel, Molecules 2004, 9, 440.
| Crossref | GoogleScholarGoogle Scholar |
(g) P. J. Steel, Acc. Chem. Res. 2005, 38, 243.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) D. A. McMorran, Inorg. Chem. 2008, 47, 592.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVehurvM&md5=77492f56d0ec2250915033f6aafd5372CAS | 18067286PubMed |
(b) R. P. Feazell, C. E. Carson, K. K. Klausmeyer, Inorg. Chem. 2006, 45, 935.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. J. Blake, N. R. Champness, P. A. Cooke, J. E. B. Nicolson, C. Wilson, J. Chem. Soc., Dalton Trans. 2000, 3811.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) N. Gimeno, R. Vilar, Coord. Chem. Rev. 2006, 250, 3161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKktbnF&md5=24599116893af6791cb3b249316dcfd3CAS |
(b) R. Custelcean, Chem. Soc. Rev. 2010, 39, 3675.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. L. Fei, W. Y. Sun, K. B. Yu, W. X. Tang, J. Chem. Soc., Dalton Trans. 2000, 805.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. A. Withersby, A. J. Blake, N. R. Champness, P. Hubberstey, W.-S. Li, M. Schröder, Angew. Chem. Int. Ed. Engl. 1997, 36, 2327.
| Crossref | GoogleScholarGoogle Scholar |
(e) I. Bassanetti, F. Mezzadri, A. Comotti, P. Sozzani, M. Gennari, G. Calestani, L. Marchiò, J. Am. Chem. Soc. 2012, 134, 9142.
| Crossref | GoogleScholarGoogle Scholar |
[4] C. M. Fitchett, P. J. Steel, Polyhedron 2007, 26, 400.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit12luw%3D%3D&md5=defadb2a7c79d85ebc0efc049a502373CAS |
[5] N. S. Oxtoby, A. J. Blake, N. R. Champness, C. Wilson, Proc. Natl. Acad. Sci. USA 2002, 99, 4905.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFKmsbk%3D&md5=cc7d8d101d015981df119e200e6f85aaCAS | 11959943PubMed |
[6] J. A. R. Navarro, B. Lippert, Coord. Chem. Rev. 2001, 222, 219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1aru70%3D&md5=380bd21510f76ddcf4bc3c052165755aCAS |
[7] (a) R. A. Krause, K. Krause, Inorg. Chem. 1980, 19, 2600.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXls1Sgtbw%3D&md5=424e936d7fcca5796905ef4d5a5c11c6CAS |
(b) M. Shivakumar, K. Pramanik, P. Ghosh, A. Chakravorty, Inorg. Chem. 1998, 37, 5968.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Shivakumar, K. Pramanik, P. Ghosh, A. Chakravorty, Chem. Commun. 1998, 2103.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Roy, P. Chattopadhyay, C. Sinha, S. Chattopadhyay, Polyhedron 1996, 15, 3361.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Banerjee, S. Bhattacharyya, B. K. Dirghangi, M. Menon, A. Chakravorty, Inorg. Chem. 2000, 39, 6.
| Crossref | GoogleScholarGoogle Scholar |
(f) A. K. Deb, S. Choudhury, S. Goswami, Polyhedron 1990, 9, 2251.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) A. H. Velders, K. van der Schilden, A. C. G. Hotze, J. Reedijk, H. Kooijman, A. L. Spek, Dalton Trans. 2004, 448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlGmuw%3D%3D&md5=4760c102c360ccb4010719179124168cCAS | 15252553PubMed |
(b) G. K. Lahiri, S. Bhattacharya, S. Goswami, A. Chakravorty, J. Chem. Soc., Dalton Trans. 1990, 561.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. N. Ackermann, C. R. Barton, C. J. Deodene, E. M. Specht, S. C. Keill, W. E. Schreiber, H. Kim, Inorg. Chem. 1989, 28, 397.
| Crossref | GoogleScholarGoogle Scholar |
[9] D. A. Baldwin, A. B. P. Lever, R. V. Parish, Inorg. Chem. 1969, 8, 107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXktlGnsw%3D%3D&md5=7f1af146737884f79705e05a1d80180aCAS |
[10] W. Y. Wong, S. H. Cheung, S. M. Lee, S. Y. Leung, J. Organomet. Chem. 2000, 596, 36.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVSgsLc%3D&md5=2079980fc0c8e4a46dda4af5af1b9177CAS |
[11] S. D. Ernst, W. Kaim, Inorg. Chem. 1989, 28, 1520.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhs1amu7s%3D&md5=3403541a2064c0f2db958cdffa7b0e9dCAS |
[12] M. Bardají, M. Barrio, P. Espinet, Dalton Trans. 2011, 40, 2570.
| Crossref | GoogleScholarGoogle Scholar | 21279236PubMed |
[13] (a) M. Camalli, F. Caruso, G. Mattogno, E. Rivarola, Inorg. Chim. Acta 1990, 170, 225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsFalsbg%3D&md5=ba3c2ef76dbb99b3dec01f729144c4dbCAS |
(b) A. Dogan, B. Sarkar, A. Klein, F. Lissner, T. Schleid, J. Fiedler, S. Záliš, V. K. Jain, W. Kaim, Inorg. Chem. 2004, 43, 5973.
| Crossref | GoogleScholarGoogle Scholar |
[14] L. Carlucci, G. Ciani, D. M. Proserpio, S. Rizzato, New J. Chem. 2003, 27, 483.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsV2ktrw%3D&md5=2f3db33c59925243aa9d79c0bb4c2918CAS |
[15] R. K. Golder, Silver Complexes of Azobenzene and Derivatives 2012 M.Sc. Thesis. University of Canterbury, Christchurch, New Zealand.
[16] C. J. Sumby, P. J. Steel, Inorg. Chim. Acta 2007, 360, 2100.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1Crs7g%3D&md5=49c1822bd51b2b8fa04e1306e66f3b55CAS |
[17] (a) P. J. Steel, C. J. Sumby, Dalton Trans. 2003, 4505.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVGqtr4%3D&md5=07c109f76c0643c831e6fefe5e878cb4CAS |
(b) J. Burgess, P. J. Steel, Coord. Chem. Rev. 2011, 255, 2094.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Puttreddy, P. J. Steel, CrystEngComm 2014, 16, 556.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Puttreddy, J. R. A. Cottam, P. J. Steel, RSC Advances 2014, 4, 22449.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. W. Kelemu, P. J. Steel, Polyhedron 2014, 71, 99.
| Crossref | GoogleScholarGoogle Scholar |
[18] L. Yang, D. R. Powell, R. P. Houser, Dalton Trans. 2007, 955.
| Crossref | GoogleScholarGoogle Scholar | 17308676PubMed |
[19] F. R. Keene, Chem. Soc. Rev. 1998, 27, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtVahtb0%3D&md5=818c952dfecdeb4958f4e7c05cec31e9CAS |
[20] H. Schmidbaur, A. Schier, Angew. Chem. Int. Ed. 2015, 54, 746.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFShurfP&md5=551cb91420b0e776be9d7043f7504932CAS |
[21] A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVeitb8%3D&md5=03dc887c3210966659e694ec9f2de1edCAS |
[22] L. S. Kelso, D. A. Reitsma, F. R. Keene, Inorg. Chem. 1996, 35, 5144.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xksl2gs74%3D&md5=37dbf74860b6770cc5a24f9fef8db9c3CAS |
[23] P. Alborés, C. Plenk, E. Rentschler, Inorg. Chem. 2012, 51, 8373.
| Crossref | GoogleScholarGoogle Scholar | 22830386PubMed |
[24] A. Kirpal, Chem. Ber. 1934, 67, 70.
| Crossref | GoogleScholarGoogle Scholar |
[25] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=59f548f8f29686b585f885edea91b42eCAS | 18156677PubMed |
[26] G. M. Sheldrick, SHELXL97. Programs for Crystal Structure Analysis 1997 (University of Göttingen: Göttingen, Germany).