Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Thermally Rearranged Poly(benzoxazole) Copolymer Membranes for Improved Gas Separation: A Review

Colin A. Scholes
+ Author Affiliations
- Author Affiliations

Department of Chemical and Biomolecular Engineering, The University of Melbourne, Vic., 3010, Australia. Email: cascho@unimelb.edu.au




Dr. Colin Scholes is a senior lecturer in the Department of Chemical and Biomolecular Engineering at the University of Melbourne whose research is focused on development of novel polymeric systems for membrane separation technologies. This research has a range of application where gas, vapour and chemical separation occurs, with real world applications in environmental, biological and clean energy fields.

Australian Journal of Chemistry 69(6) 601-611 https://doi.org/10.1071/CH15523
Submitted: 25 August 2015  Accepted: 18 November 2015   Published: 11 January 2016

Abstract

Polymeric membranes for gas separation have application in a wide range of industries such as natural gas sweetening and air enrichment. Recently, high-performance gas separation polymeric membranes have been developed based on a novel thermal rearrangement process that produces the resistant poly(benzoxazole) (TR-PBO). This review reports on the current state of the art TR-PBO membranes for gas separation and the underlying chemistry needed to achieve such high separation performance. Particular focus is applied to copolymers based on TR-PBO for membranes as these have attracted considerable research interest recently for their gas separation performance and superior mechanical properties compared with TR-PBO. Also included in this review is a discussion of the future directions of research on TR-PBO-based membranes for gas separation.


References

[1]  S. E. Kentish, in Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications (Eds A. Basile, S. P. Nunes) 2011, (Woodhead Publishing Ltd: Cambridge).

[2]  Membranes for Clean and Renewable Power Applications 2014 (Woodhead Publishing: Oxford).

[3]  H. Lin, M. Zhou, J. Ly, J. Vu, J. G. Wijmans, T. C. Merkel, J. Jin, A. Haldeman, E. H. Wagener, D. Rue, Ind. Eng. Chem. Res. 2013, 52, 10820.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVCku7nO&md5=d6c2556a0658b3d9074f9d1fdbd048f1CAS |

[4]  R. R. Zolandz, G. K. Fleming, in Membrane Handbook (Eds W. S. W. Ho, K. K. Sirkar) 1992, pp. 78–94 (Kluwer Academic Publishers: Norwell).

[5]  R. W. Baker, in Advanced Membrane Technology and Applications (Eds N. N. Li, A. G. Fane, W. S. W. Ho, T. Matsuura) 2008, pp. 559–580 (John Wiley & Sons: Hoboken, NJ).

[6]  (a) G. I. Braz, I. Y. Kardash, V. S. Yakubovich, G. V. Myaninkova, A. Y. Ardashnikov, A. F. Oleinik, A. N. Pravednikov, A. Ya. Yakubovich, Polym. Sci. USSR. 1966, 8, 295.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) V. V. Korshak, G. M. Tseitlin, A. I. Pavlov, Polym. Sci. USSR. 1969, 11, 9.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. Van Wagner, B. D. Freeman, D. J. Cookson, Science 2007, 318, 254.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFCjt73O&md5=699f654ea4f91d64f876ca466307b4daCAS | 17932294PubMed |

[8]  (a) C. H. Park, E. Tocci, S. Kim, A. Kumar, Y. M. Lee, E. Drioli, J. Phys. Chem. B 2014, 118, 2746.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjsVSmt7Y%3D&md5=d10c54cb65191ba601bee1f0f007d309CAS | 24588267PubMed |
      (b) Y. Jiang, F. T. Willmore, D. F. Sanders, Z. P. Smith, C. P. Ribeiro, C. M. Doherty, A. Thornton, A. J. Hill, B. D. Freeman, I. C. Sanchez, Polymer 2011, 52, 2244.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  S. Kim, S. H. Han, Y. M. Lee, J. Membr. Sci. 2012, 403, 169.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  H. B. Park, S. H. Han, C. H. Jung, Y. M. Lee, A. J. Hill, J. Membr. Sci. 2010, 359, 11.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFWrtLk%3D&md5=cb02112e2cf100b0f71ea5a786c2bb85CAS |

[11]  L. M. Robeson, J. Membr. Sci. 2008, 320, 390.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFOqur8%3D&md5=f41ca207098fb41d63b4683b64b90fb8CAS |

[12]  J.-H. Chang, K. M. Park, S.-M. Lee, J. B. Oh, J. Polym. Sci., Part B: Polym. Phys. 2000, 38, 2537.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsF2jsbc%3D&md5=6996e86b8bf14fd79e6c6531a03e053eCAS |

[13]  R. Guo, D. F. Sanders, Z. P. Smith, B. D. Freeman, D. R. Paul, J. E. McGrath, J. Mater. Chem. 2013, 1, 6063.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFekt7k%3D&md5=9aeed9b192748924ed9b2e7f49926712CAS |

[14]  T. Takekoshi, in Polyimides: Fundamentals and Applications (Eds M. K. Ghosh, K. L. Mital) 1996, pp. 7–45 (Marcel Dekker: New York, NY).

[15]  D. F. Sanders, R. Guo, Z. P. Smith, Q. Liu, K. A. Stevens, J. E. McGrath, D. R. Paul, B. D. Freeman, Polymer 2014, 55, 1636.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt12htbk%3D&md5=2e967a0986301bc88197c1b9aa4fad8bCAS |

[16]  (a) S. Kim, Y. M. Lee, J. Nanopart. Res. 2012, 14, 949.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) S. Kim, Y. M. Lee, Prog. Polym. Sci. 2015, 43, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  S. H. Han, N. Misdan, S. Kim, C. M. Doherty, A. J. Hill, Y. M. Lee, Macromolecules 2010, 43, 7657.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2kt7nO&md5=596edc09fea3f12d051319f60ea96c47CAS |

[18]  (a) D. F. Sanders, Z. P. Smith, C. P. Ribeiro, R. Guo, J. E. McGrath, D. R. Paul, B. D. Freeman, J. Membr. Sci. 2012, 409, 232.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) H. Wang, T.-S. Chung, D. R. Paul, J. Membr. Sci. 2014, 450, 308.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  B. Comesaña-Gándara, M. Calle, H. J. Jo, A. Hernandez, J. G. de la Campa, J. de Abajo, A. E. Lozano, Y. M. Lee, J. Membr. Sci. 2014, 450, 369.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  R. L. Burns, W. J. Koros, Macromolecules 2003, 36, 2374.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvF2ks70%3D&md5=4d44361586e3f298a2bd2ffecc89280fCAS |

[21]  M. Calle, C. M. Doherty, A. J. Hill, Y. M. Lee, Macromolecules 2013, 46, 8179.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGkurnJ&md5=a4b477415a8bd4d0d3bd8efd3eeece6bCAS |

[22]  V. V. Korshak, A. V. Vinogradov, V. V. Rode, G. M. Tseitlin, Z. T. Al’Khaidar, Polym. Sci. USSR. 1972, 14, 1713.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  C. Y. Soo, H. J. Jo, Y. M. Lee, J. R. Quay, M. K. Murphy, J. Membr. Sci. 2013, 444, 365.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFShtbnM&md5=c1595d56ba179353726d7f026aa91f1dCAS |

[24]  M. Calle, A. E. Lozano, Y. M. Lee, Eur. Polym. J. 2012, 48, 1313.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFCnsrY%3D&md5=ac4b04b98268213accd10997c5d8e482CAS |

[25]  C. H. Jung, J. E. Lee, S. H. Han, H. B. Park, Y. M. Lee, J. Membr. Sci. 2010, 350, 301.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlWltbk%3D&md5=28fd18b68b951563ffa334581e8201f2CAS |

[26]  H. J. Jo, C. Y. Soo, G. Dong, Y. S. Do, H. H. Wang, M. J. Lee, J. R. Quay, M. K. Murphy, Y. M. Lee, Macromolecules 2015, 48, 2194.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlslKnsrY%3D&md5=7a902229f9534ba88ccddf3ffdcf6033CAS |

[27]  C. A. Scholes, C. P. Ribeiro, S. E. Kentish, B. D. Freeman, J. Membr. Sci. 2014, 450, 72.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWqsbfF&md5=3d33e23977a761c3c04f04b54b4bb49dCAS |

[28]  Y. F. Yeong, H. Wang, K. P. Pramoda, T.-S. Chung, J. Membr. Sci. 2012, 397, 51.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  J. I. Choi, C. H. Jung, S. H. Han, H. B. Park, Y. M. Lee, J. Membr. Sci. 2010, 349, 358.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlOnur4%3D&md5=9e9b6d2a23f8435417ebc4e1fea25955CAS |

[30]  (a) P. M. Budd, N. B. McKeown, B. S. Ghanem, K. J. Msayib, D. Fritsch, L. Starannikova, N. Belov, O. Sanfirova, Y. Yampolskii, V. Shantarovich, J. Membr. Sci. 2008, 325, 851.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyqtbzJ&md5=923ec6287e847456c6fbf19cc48113abCAS |
      (b) P. M. Budd, K. J. Msayib, C. E. Tattershall, B. S. Ghanem, K. J. Reynolds, N. B. McKeown, D. Fritsch, J. Membr. Sci. 2005, 251, 263.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  S. Li, H. J. Jo, S. H. Han, C. H. Park, S. Kim, P. M. Budd, Y. M. Lee, J. Membr. Sci. 2013, 434, 137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFOqs7Y%3D&md5=1ca0b4a5aa3d7268e7cbb1706f7a18afCAS |

[32]  H. Shamsipur, B. A. Dawood, P. M. Budd, P. Bernardo, G. Claizia, J. C. Jansen, Macromolecules 2014, 47, 5595.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1KjtL%2FN&md5=22516f4ad92f6c328500537cfdc8ff82CAS |

[33]  L. M. Robeson, Ind. Eng. Chem. Res. 2010, 49, 11859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFWgsL0%3D&md5=a82b6c773d546cddcf741ebca001db12CAS |

[34]  C. A. Scholes, C. P. Ribeiro, S. E. Kentish, B. D. Freeman, Sep. Purif. Technol. 2014, 124, 134.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivVGisb8%3D&md5=dd1324533dd8d98b7f526156e7df1388CAS |

[35]  M. Calle, Y. M. Lee, Macromolecules 2011, 44, 1156.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFamt7w%3D&md5=86dc35ca1ed4f3d531f722c147a449a4CAS |

[36]  Y. Kase, in Advanced Membrane Technology and Applications (Eds N. N. Li, A. G. Fane, W. S. W. Ho, T. Matsuura) 2008, pp. 581–598 (John Wiley & Sons: Hoboken).