Palladium-Catalyzed Suzuki Cross-Coupling of 2-Halo-Deazapurines with Potassium Organotrifluoroborate Salts in the Regioselective Synthesis of Imidazo[4,5-b]pyridine Analogues
Bhaskaran Savitha B F , Ayyiliath. M. Sajith A E F , M. Nibin Joy C D , K.K. Abdul Khader B , A. Muralidharan A , M. Syed Ali Padusha B D and Yadav D. Bodke CA Postgraduate and Research Department of Chemistry, Kasaragod Government College, Kannur University, Kasaragod, Kerala, 671123 India.
B Postgraduate and Research Department of Chemistry, Jamal Mohamed College, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620020 India.
C Department of Postgraduate Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shimoga, Karnataka, 577451 India.
D Current address: Department of Science & Humanities (Chemistry), Karpagam College of Engineering, Myleripalayam Village, Othakkal Mandapam Post, Coimbatore, 641032, Tamilnadu, India.
E Corresponding authors. Email: sajithmeleveetil@gmail.com; m.padusha@gmail.com
F Both are equal contributors to the work.
Australian Journal of Chemistry 69(6) 618-630 https://doi.org/10.1071/CH15420
Submitted: 12 July 2015 Accepted: 7 October 2015 Published: 22 December 2015
Abstract
In this paper, we report the use of potassium organotrifluoroborate salts as nucleophilic organoboron reagents in the Suzuki cross-coupling reactions of 2-halo deazapurines. Regio-isomeric C-2-substituted imidazo[4,5-b]pyridine analogues were synthesized by employing this protocol in good to excellent yields. Whereas aryl and heteroaryl trifluoroborates reacted readily to give the coupled products in high yields, alkyltrifluoroborates were found to be less reactive. The utilization of tetrabutylammonium acetate was found to play a substantial role in enhancing the reaction rates of the cross-coupling process. Also, a comparative study was performed between boronic acids and potassium organotrifluoroborate salts.
References
[1] F. Bellina, A. Carpita, R. Rossi, Synthesis 2004, 2419.| 1:CAS:528:DC%2BD2cXptVKlurw%3D&md5=8220c85c9ad5d42b2eae3358cb1d54f3CAS |
[2] P. J. Persichini, Curr. Org. Chem. 2003, 7, 1725.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFSktbs%3D&md5=a48c9ece9906253ac56a5dd54702e785CAS |
[3] A. Suzuki, Chem. Commun. 2005, 4759.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVeqs73J&md5=758dcea4a2c9c204e2474920d02f6f85CAS |
[4] F. A. Grimm, L. Barton, R. F. Porter, Inorg. Chem. 1968, 7, 1309.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXktl2qtLs%3D&md5=e770135fb2171661b75df2233aa4e759CAS |
[5] C. H. Chang, R. F. Porter, S. H. Bauer, Inorg. Chem. 1969, 8, 1689.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXks1GjtLY%3D&md5=b1cd282545a324e8e88b6e39c08ab388CAS |
[6] M. Butters, J. N. Harvey, J. Jover, A. J. Lennox, G. C. Lloyd-Jones, P. M. Murray, Angew. Chem. Int. Ed. 2010, 49, 5156.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVCmtLY%3D&md5=d08fb23b160928ac7c8665c4c2e5bcf8CAS |
[7] G. A. Molander, N. Ellis, Acc. Chem. Res. 2007, 40, 275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptFOjtQ%3D%3D&md5=0accb791040cc1820334b2a0312cf218CAS | 17256882PubMed |
[8] E. Vedejs, R. W. Chapman, S. C. Fields, S. Lin, M. R. Schrimpf, J. Org. Chem. 1995, 60, 3020.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsFCjsL0%3D&md5=204f231022c1ccfd12f90ca74d2d69b9CAS |
[9] G. A. Molander, B. Biolatto, J. Org. Chem. 2003, 68, 4302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlKisb4%3D&md5=b7afd352a329e156302c0e1432d33f2fCAS | 12762730PubMed |
[10] G. A. Molander, T. Fumagalli, J. Org. Chem. 2006, 71, 5743.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt12mtLs%3D&md5=40f4b8542a293da61bcd18f16dbd30e2CAS | 16839157PubMed |
[11] G. A. Molander, C. Bernardi, J. Org. Chem. 2002, 67, 8416.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotlSrtrs%3D&md5=7455eb2a13ab98dfc60d5184ed40ccaaCAS | 12444619PubMed |
[12] G. A. Molander, T. Ito, Org. Lett. 2001, 3, 393.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvFKjsA%3D%3D&md5=cf184aeca3889c5d869d211ad2bbdf93CAS | 11428022PubMed |
[13] A. J. J. Lennox, G. C. Lloyd-Jones, J. Am. Chem. Soc. 2012, 134, 7431.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlslGrtLw%3D&md5=77e7b510621ff9a740cdfff803758551CAS |
[14] (a) A.M. Sajith, A. Muralidharan, P.K. Ranjith, K.R. Haridas, Journal of the Korean Chemical Society 2013, 57, 3.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. M. Sajith, A. Muralidharan, Tetrahedron Lett. 2012, 53, 5206.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. M. Sajith, A. Muralidharan, Tetrahedron Lett. 2012, 53, 1036.
| Crossref | GoogleScholarGoogle Scholar |
(d) K. K. Abdul Khader, A. M. Sajith, M. S. A. Padusha, H. P. Nagaswarupa, A. Muralidharan, Tetrahedron Lett. 2014, 55, 1778.
| Crossref | GoogleScholarGoogle Scholar |
(e) K. K. Abdul Khader, A. M. Sajith, M. S. A. Padusha, H. P. Nagaswarupa, A. Muralidharan, New J. Chem. 2014, 38, 1294.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. N. Joy, B. Savitha, A. M. Sajith, Y. D. Bodke, T. Venkatesh, K. K. Abdul Khader, M. S. A. Padusha, A. Muralidharan, Chin. Chem. Lett. 2015,
| Crossref | GoogleScholarGoogle Scholar |
[15] G. Aridoss, S. Balasubramaniam, P. Parthiban, S. Kabilan, Eur. J. Med. Chem. 2006, 41, 268. and references cited therein.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislCitL4%3D&md5=4e7daaca1a1a423bf77e7b4d01781f8bCAS | 16380194PubMed |
[16] A. F. Youssef, M. A. E1-Gendy, N. A. E. Aboutaleb, S. H. Ahmed, Egypt. J. Pharm. Sci. 1982, 23, 131.
| 1:CAS:528:DyaL2MXhtV2ltrk%3D&md5=81d553a711914ff42966e662281634a7CAS |
[17] O. Wolff, S. R. Waldvogel, Synthesis 2007, 761.
| 1:CAS:528:DC%2BD2sXjsFCntbc%3D&md5=ea71c9b455eddf27883ae65452796d96CAS |
[18] F. Manarin, J. A. Roehrs, O. Branda, C. W. Nogueira, G. Zeni, Synthesis 2009, 4001.
| 1:CAS:528:DC%2BD1MXhs1Whu7zI&md5=10ff987571c475ec2442440bc5c56150CAS |
[19] K. C. Majumdar, B. Chattopadhyay, S. Samanta, Synthesis 2009, 211.
[20] T. Itoh, T. Mase, Tetrahedron Lett. 2005, 46, 3573.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1SrsLg%3D&md5=2c88abb3eeb24777a0a974c4cd64ecadCAS |
[21] A. M. Sajith, A. Muralidharan, Tetrahedron Lett. 2012, 53, 1036.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslCmu7s%3D&md5=6d0c2f41cdf4501baec5151016d91051CAS |
[22] M. Butters, N. H. Jeremy, J. Jesus, A. J. J. Lennox, G. C. Lloyd-Jones, M. M. Paul, Angew. Chem. Int. Ed. 2010, 49, 5156.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVCmtLY%3D&md5=d08fb23b160928ac7c8665c4c2e5bcf8CAS |
[23] G. A. Molander, L. N. Cavalcanti, B. Canturk, L. E. Kennedy, J. Org. Chem. 2009, 74, 7364.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWqu7fF&md5=d70086a0773ef621d4dead6cd49e40b7CAS | 19743828PubMed |
[24] K. Matos, J. A. Soderquist, J. Org. Chem. 1998, 63, 461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVWrug%3D%3D&md5=efca53968fb57e39ac36cc24d69cbf80CAS | 11672034PubMed |
[25] For review on cross-coupling reactions of alkyltrifluoroborates, see H. Doucet, Eur. J. Org. Chem. 2008, 2013.
| 1:CAS:528:DC%2BD1cXltlOltLs%3D&md5=b5415f477f2a9e2cf220b50fdde38885CAS |
[26] D. M. Knapp, E. P. Gillis, M. D. Burke, J. Am. Chem. Soc. 2009, 131, 6961.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Cls7s%3D&md5=d11f2cfa989fcf90c3ae587ad82b6091CAS | 19405470PubMed |
[27] A. J. J. Lennox, G. C. Lloyd-Jones, Isr. J. Chem. 2010, 50, 664.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2rtrvP&md5=90105a450fd43f7c5c7b97778d86d731CAS |
[28] R. Ting, C. W. Harwig, J. Lo, Y. Li, M. J. Adam, T. J. Ruth, D. M. Perrin, J. Org. Chem. 2008, 73, 4662.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVGiu7k%3D&md5=d624687ad6e755d37657e9863bef4fcdCAS | 18489162PubMed |
[29] H. Y. Sun, D. G. Hall, Nat. Chem. 2014, 6, 561.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVais7%2FP&md5=cbd8d8a5a2fd3d42f4210e990b01d6e1CAS | 24950322PubMed |