Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Comparison of the Lewis Basicity of Diamidocarbenes and Diaminocarbenes

Chin-Hung Lai
+ Author Affiliations
- Author Affiliations

School of Medical Applied Chemistry, and the Department of Medical Education, Chung Shan Medical University, 402, Taichung, Taiwan. Email: chlai125@csmu.edu.tw

Australian Journal of Chemistry 68(7) 1084-1090 https://doi.org/10.1071/CH14555
Submitted: 11 September 2014  Accepted: 14 November 2014   Published: 16 February 2015

Abstract

In this study, density functional theory calculations, using the M06-2X functional, were performed to investigate the efficiencies of various carbenes in inducing hydrogen abstraction in BH3 through the formation of a Lewis acid–base pair with BH3. The density functional theory results indicate that diamidocarbenes are more efficient in reducing the B–H bond energy of BH3 than diaminocarbenes. Natural bond orbital and combined charge and bond energy analyses were performed to investigate the Lewis acid–base pair formed by BH3 and the title carbenes.


References

[1]  See for example: W. Kirmse, Carbene Chemistry 1971 (Academic Press: New York, NY).

[2]  A. J. Arduengo, R. L. Harlow, M. A. Kline, J. Am. Chem. Soc. 1991, 113, 361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt1Sjuw%3D%3D&md5=c4a358e518359cfe52a92e06d63100c7CAS |

[3]  See for example: D. Enders, T. Balensiefer, Acc. Chem. Res. 2004, 37, 534.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVequ7Y%3D&md5=8707e724df3fe3fe6827b2a27d3a45e7CAS | 15311952PubMed |

[4]  W. A. Herrmann, T. Weskamp, V. P. W. Böhm, Adv. Organomet. Chem. 2001, 48, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xntl2quw%3D%3D&md5=726a0d4126b2f835ec5b3db67f9da79aCAS |

[5]  J. Huang, H.-J. Schanz, E. D. Stevens, S. P. Nolan, Organometallics 1999, 18, 2370.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVSmt7g%3D&md5=24e9fe164d79bb4c56a532afb3f9ca28CAS |

[6]  D. Nemcsok, W. Wichmann, G. Frenking, Organometallics 2004, 23, 3640.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsF2mtLY%3D&md5=5d5409464818dea6e6c0ade2f857339dCAS |

[7]  M. D. Sanderson, J. W. Camplain, C. W. Bielawski, J. Am. Chem. Soc. 2006, 128, 16514.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12lsL7P&md5=33bc22ded5c7f6d9cd72c6b2b2da7b5fCAS | 17177396PubMed |

[8]  S. Díez-González, S. P. Nolan, Coord. Chem. Rev. 2007, 251, 874.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  D. M. Khramov, V. M. Lynch, C. W. Bielawski, Organometallics 2007, 26, 6042.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2jtbzO&md5=a7e0599c71cd62aa79da72132a4ba44bCAS |

[10]  A. Kausamo, H. M. Tuononen, K. E. Krahulic, R. Roesler, Inorg. Chem. 2008, 47, 1145.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslKk&md5=42da189e5ef0f1bc774b74fe095627e7CAS | 18166046PubMed |

[11]  M. Srebro, A. Michalak, Inorg. Chem. 2009, 48, 5361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFSrtr0%3D&md5=45a6b953046ae0e804d45931c1657c7cCAS | 19400577PubMed |

[12]  M. D. Esrafili, J. Mol. Model. 2012, 18, 2003.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsVaisb0%3D&md5=abfaf0379957998dbc35a3fe98a86879CAS | 21877151PubMed |

[13]  M. G. Hobbs, T. D. Forster, J. Borau-Garcia, C. Knapp, H. M. Tuononen, R. Roesler, New J. Chem. 2010, 34, 1295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1ert7o%3D&md5=c3ccb13072cf598985a6b45f78e0a29cCAS |

[14]  A. J. Arduengo, H. Bock, H. Chen, M. Denk, D. A. Dixon, J. C. Green, W. A. Hermann, N. J. Jones, M. Wagner, R. West, J. Am. Chem. Soc. 1994, 116, 6641.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlCgsrs%3D&md5=3787bb81daf3f78c9d1936238b93490dCAS |

[15]  A. J. Arduengo, D. A. Dixon, K. K. Kumashiro, C. Lee, W. P. Power, K. W. Zilm, J. Am. Chem. Soc. 1994, 116, 6361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlensbw%3D&md5=157f3bf83b9b643afb7b3c1154ad93e5CAS |

[16]  C. Heinemann, W. Thiel, Chem. Phys. Lett. 1994, 217, 11.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvFSlsbY%3D&md5=9f05e24f30167417c5888939561ce996CAS |

[17]  C. Heinemann, T. Müller, Y. Apeloig, H. Schwarz, J. Am. Chem. Soc. 1996, 118, 2023.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XovFGjsw%3D%3D&md5=98eaec5e15a930cd4516f5e41f1727d7CAS |

[18]  M.-J. Cheng, C.-H. Hu, Chem. Phys. Lett. 2000, 322, 83.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsVyjsr4%3D&md5=554e293726420fe53d10cd5bd4486612CAS |

[19]  M.-J. Cheng, C.-H. Hu, Chem. Phys. Lett. 2001, 349, 477.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvFOq&md5=3c88f976b9663b16ac526b62a1aad6fcCAS |

[20]  D. A. Dixon, A. J. Arduengo, J. Phys. Chem. A 2006, 110, 1968.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xksl2rtA%3D%3D&md5=f3fa6970ea21ed44aeea39af93a72dcdCAS | 16451031PubMed |

[21]  C. Boehme, G. Frenking, J. Am. Chem. Soc. 1996, 118, 2039.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XovFGjtw%3D%3D&md5=ff25f7874611eed44a51f71b1ff7ed49CAS |

[22]  R. Tonner, G. Heydenrych, G. Frenking, Chem. Asian J. 2007, 2, 1555.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGlsLzF&md5=4faaef76cd22a7fffc2690cb44ba8a8bCAS | 17939149PubMed |

[23]  C. Boehme, G. Frenking, Organometallics 1998, 17, 5801.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsFKntrw%3D&md5=46e2f3914ea81bc26f82fb6a63b35c3cCAS |

[24]  D. Nemcsok, K. Wichmann, G. Frenking, Organometallics 2004, 23, 3640.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsF2mtLY%3D&md5=5d5409464818dea6e6c0ade2f857339dCAS |

[25]  S. K. Schneider, G. R. Julius, C. Loschen, H. G. Raubenheimer, G. Frenking, W. A. Herrmann, Dalton Trans. 2006, 1226.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVKqt7g%3D&md5=225c9764f507ccf6d2ab83d1800090f2CAS | 16482361PubMed |

[26]  E. Stander-Grobler, O. Schuster, G. Heydenrych, S. Cronje, E. Tosh, M. Albrecht, G. Frenking, H. G. Raubenheimer, Organometallics 2010, 29, 5821.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWksb3K&md5=7f6a2fc68ac465d8ee90b88020b6743cCAS |

[27]  M. A. Celik, C. Dash, V. A. K. Adiraju, A. Das, M. Yousufuddin, G. Frenking, H. V. R. Dias, Inorg. Chem. 2013, 52, 729.and references therein.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFSgt7fP&md5=004e6a3326b1605e8938fa8948b4509cCAS | 23273108PubMed |

[28]  S.-H. Ueng, M. M. Makhlouf Brahmi, É. Derat, L. Fensterbank, E. Lacôte, M. Malacria, D. P. Curran, J. Am. Chem. Soc. 2008, 130, 10082.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1ertLk%3D&md5=e6aa45287055521f5bcc875847a6ab08CAS | 18611014PubMed |

[29]  P. A. Baguley, J. C. Walton, Angew. Chem. Int. Ed. 1998, 37, 3072.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht12h&md5=8db80d6dee78fdd980493842c684c1c3CAS |

[30]  A. Studer, S. Amrein, Synthesis 2002, 835.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFClt7s%3D&md5=907be6096f3920c954ee807e7358c0e4CAS |

[31]  B. C. Gilbert, A. F. Parsons, J. Chem. Soc. Perkin Trans. 2 2002, 2002, 367.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  P. R. Rablen, J. F. Hartwig, J. Am. Chem. Soc. 1996, 118, 4648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFCmsbw%3D&md5=8a4035fb9c6a942ba0ad0a5670c669d4CAS |

[33]  P. R. Rablen, J. Am. Chem. Soc. 1997, 119, 8350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFChu7k%3D&md5=d13b2b36f244106b869ba8b7f0432df7CAS |

[34]  J. Hioe, A. Karton, J. M. L. Martin, H. Zipse, Chemistry 2010, 16, 6861.and references therein.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVOktb4%3D&md5=b02b0afd87bd8c80cfc227a4a5774874CAS | 20449854PubMed |

[35]  C.-H. Lai, P.-T. Chou, J. Comput. Chem. 2010, 31, 2258.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVCnsbc%3D&md5=beddae13bfefd9a3b77b048ba77d3c17CAS | 20336800PubMed |

[36]  T. W. Hudnall, C. W. Bielawski, J. Am. Chem. Soc. 2009, 131, 16039.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12iurbF&md5=b289acaa756b11d8685104a7f8d4e8ffCAS | 19842700PubMed |

[37]  T. W. Hudnall, E. J. Moorhead, D. G. Gusev, C. W. Bielawski, J. Org. Chem. 2010, 75, 2763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFSksrs%3D&md5=aa199999583d1f7bdc34c7b646bfa728CAS | 20297836PubMed |

[38]  V. César, N. Lugan, G. Lavigne, Eur. J. Inorg. Chem. 2010, 361.

[39]  T. W. Hudnall, A. G. Tennyson, W. Christopher, C. W. Bielawski, Organometallics 2010, 29, 4569.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WmsbfK&md5=9f1024937abf98b017b4a24a2ac79ba7CAS |

[40]  M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. A 2009, 113, 5806.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslOlu7o%3D&md5=bd4be9eb33a3ff8557f6e8131659b534CAS | 19382751PubMed |

[41]  H. Yuan, D. Cremer, Chem. Phys. Lett. 2000, 324, 389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks12rsrk%3D&md5=00e3a4d44e6d638f35cb070ef082cb37CAS |

[42]  L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, J. A. Pople, J. Chem. Phys. 1998, 109, 7764.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVeruro%3D&md5=3f45320005bfff46e5dd47c352d84c25CAS |

[43]  K. B. Wiberg, Tetrahedron 1968, 24, 1083.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXlvV2qsQ%3D%3D&md5=e00d40a9791a338418b1e3366f6be117CAS |

[44]  A. Michalak, R. L. De Kock, T. Ziegler, J. Phys. Chem. A 2008, 112, 7256.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFKmu7c%3D&md5=ace2ad1688211ff5d149041806c39361CAS | 18627137PubMed |

[45]  R. F. Nalewajski, J. Mrozek, A. Michalak, Int. J. Quantum Chem. 1997, 61, 589.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFyhsg%3D%3D&md5=1d253bcd8d6a85e0451b79f0e43426deCAS |

[46]  M. Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theory Comput. 2009, 5, 962.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFamsb0%3D&md5=3b086cea3173926fa9453dc8268418b9CAS |

[47]  M. Mitoraj, A. Michalak, T. Ziegler, Organometallics 2009, 28, 3727.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Cnu70%3D&md5=d5183c635ce5a018e23c41aad7a486f5CAS |

[48]  N. Holzmann, A. Stasch, C. Jones, G. Frenking, Chemistry 2013, 19, 6467.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksVOgtLk%3D&md5=d6a07e15664eb45642655355abb2d663CAS | 23512819PubMed |