Various pH-Dependent Copper(ii) Coordination Architectures Constructed from N,N′-Di(3-pyridyl)succinamide and Two Different Dicarboxylates
Xiu-Li Wang A B , Fang-Fang Sui A , Hong-Yan Lin A and Guo-Cheng Liu AA Department of Chemistry, Bohai University, Liaoning Province Silicon Materials Engineering Technology Research Centre, Jinzhou 121000, China.
B Corresponding author. Email: wangxiuli@bhu.edu.cn
Australian Journal of Chemistry 68(7) 1076-1083 https://doi.org/10.1071/CH14561
Submitted: 13 September 2014 Accepted: 13 November 2014 Published: 24 February 2015
Abstract
Using a bis-pyridyl-bis-amide N,N′-di(3-pyridyl)succinamide (L) and two dicarboxylates as mixed ligands, four 2D copper(ii) metal–organic networks, formulated as [Cu(1,4-chdc)(L)]·3H2O (1), [Cu(1,4-chdc)(L)]·H2O (2), [Cu(2,5-tdc)(L)]·H2O (3), and [Cu(2,5-tdc)(L)]·2H2O (4) (L = N,N′-di(3-pyridyl)succinimide; 1,4-H2chdc = 1,4-cyclohexanedicarboxylic acid; 2,5-H2tdc = thiophen-2,5-dicarboxylic acid) have been hydrothermally synthesized under different pH conditions, and characterized by IR spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction. Compound 1, formed at pH 5.4, contains two rare types of left-, right-handed [Cu-L]n helix chains, which are further connected by [Cu-1,4-chdc]n zigzag chains, affording a 2D wave-like polymeric network. Compound 2 was obtained at pH 5.9, and shows a 2D square-grid layer constructed from zigzag [Cu-L]n chains and linear [Cu-1,4-chdc]n chains. Compounds 3 and 4 possess a similar 2D grid layer to that of 2 with 44-sql topology, formed at pH 4.8 and 5.4 respectively, and are constructed from zigzag [Cu-L]n chains and linear [Cu-2,5-tdc]n chains. The effects of pH and secondary dicarboxylates on the diversity of structures are discussed. In addition, the thermal stabilities, photoluminescence properties, and photocatalytic activity of compounds 1–4 were also studied.
References
[1] D. Sun, L. L. Han, S. Yuan, Y. K. Deng, M. Z. Xu, D. F. Sun, Cryst. Growth Des. 2013, 13, 377.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslyltLbM&md5=9cc8c0f8e5c6d098f63e454c203127a3CAS |
[2] L. T. Du, Z. Y. Lu, K. Y. Zheng, J. Y. Wang, X. Zheng, Y. Pan, X. Z. You, J. F. Bai, J. Am. Chem. Soc. 2013, 135, 562.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2gsLvN&md5=55d42bbbebd616e8d81d0b2a28c5f1b4CAS |
[3] X. D. Zheng, Y. L. Hua, R. G. Xiong, J. Z. Ge, T. B. Lu, Cryst. Growth Des. 2011, 11, 302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSktbbJ&md5=5b5c346db272dbff6ecd6f618a462eb5CAS |
[4] T. Wen, D. X. Zhang, J. Zhang, Inorg. Chem. 2013, 52, 12.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVertr3O&md5=633e106c61bd43f3eb9c3b650b50b286CAS | 23244571PubMed |
[5] Y. J. Cui, F. F. Yue, G. D. Qian, B. L. Chen, Chem. Rev. 2012, 112, 1126.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKitr8%3D&md5=62d5c2347c77cd72f190680977963986CAS |
[6] M. Du, X. H. Bu, Y. M. Guo, J. Ribas, C. Diaz, Chem. Commun. 2002, 2550.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVylsrc%3D&md5=bf418665c0017e038670bdfe0b027f47CAS |
[7] Y. Q. Chen, S. J. Liu, Y. W. Li, G. R. Li, K. H. He, Y. K. Qu, T. L. Hu, X. H. Bu, Cryst. Growth Des. 2012, 12, 5426.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtl2rt73K&md5=81e702f0d19bf7e32097c7094cb46096CAS |
[8] L. T. Du, Z. Y. Lu, K. Y. Zheng, J. Y. Wang, X. Zheng, Y. Pan, X. Z. You, J. F. Bai, J. Am. Chem. Soc. 2013, 135, 562.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2gsLvN&md5=55d42bbbebd616e8d81d0b2a28c5f1b4CAS |
[9] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi, Science 2002, 295, 469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyrtLjP&md5=aff2fee858042fa2e4f24b0cf23b1309CAS | 11799235PubMed |
[10] P. Mahata, M. Prabu, S. Natarajan, Cryst. Growth Des. 2009, 9, 3683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Sht78%3D&md5=bbec545e816921baaa9f3b79a0b70eb6CAS |
[11] Q. Gao, Y. B. Xie, J. R. Li, D. Q. Yuan, A. A. Yakovenko, J. H. Sun, H. C. Zhou, Cryst. Growth Des. 2012, 12, 281.
| Crossref | GoogleScholarGoogle Scholar |
[12] K. Zhou, H. Liu, S. Zhang, X. Huang, Y. Wang, G. Huang, B. D. Sumer, J. Gao, J. Am. Chem. Soc. 2012, 134, 7803.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFWhs7g%3D&md5=d354a4df8563d48136f3c0d22e4a55ddCAS | 22524413PubMed |
[13] J. X. Yang, X. Zhang, J. K. Cheng, J. Zhang, Y. G. Yao, Cryst. Growth Des. 2012, 12, 333.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKiu77L&md5=d05b1e67ba5798e135f5875d8b44b551CAS |
[14] F. Luo, Z. Z. Yuan, X. F. Feng, S. R. Batten, J. Q. Li, M. B. Luo, S. J. Liu, W. Y. Xu, G. M. Sun, Y. M. Song, H. X. Huang, X. Z. Tian, Cryst. Growth Des. 2012, 12, 3392.
| Crossref | GoogleScholarGoogle Scholar |
[15] P. C. Cheng, P. T. Kuo, Y. H. Liao, M. Y. Xie, W. Hsu, J. D. Chen, Cryst. Growth Des. 2013, 13, 623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVahs73F&md5=1fae35031d1e38e441638e3fc8b40aa9CAS |
[16] J. J. Cheng, Y. T. Chang, C. J. Wu, Y. F. Hsu, C. H. Lin, D. M. Proserpio, J. D. Chen, CrystEngComm 2012, 14, 537.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1KqsLjK&md5=b8716c47b43fdf52cfce3820209624c5CAS |
[17] Z. Z. Yuan, F. Luo, Y. M. Song, G. M. Sun, X. Z. Tian, H. X. Huang, Y. Zhu, X. F. Feng, M. B. Luo, S. J. Liu, W. Y. Xu, Dalton Trans. 2012, 12670.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKjtrrM&md5=af569f70a6e318e32be9f4be656a44c9CAS | 22986350PubMed |
[18] X. L. Wang, J. Luan, H. Y. Lin, Q. L. Lu, C. Xu, G. C. Liu, Dalton Trans. 2013, 8375.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvV2hsb4%3D&md5=a01c23ad86a25fdb79e721532a67e25dCAS |
[19] X. L. Wang, J. Luan, F. F. Sui, H. Y. Lin, G. C. Liu, C. Xu, Cryst. Growth Des. 2013, 13, 3561.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVOntrg%3D&md5=8959877240012f8b5d8219e829c6ffedCAS |
[20] X. L. Wang, F. F. Sui, H. Y. Lin, J. W. Zhang, G. C. Liu, Cryst. Growth Des. 2014, 14, 3438.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps1Srur0%3D&md5=9fd92db70fd12ebff40b20cf800261deCAS |
[21] X. L. Wang, F. F. Sui, H. Y. Lin, J. Luan, G. C. Liu, Aust. J. Chem. 2013, 66, 67.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVylsbY%3D&md5=ea6461d14edf63ef119fb9987fd18af8CAS |
[22] L. J. Bellamy, The Infrared Spectra of Complex Molecules 1958 (Wiley: New York, NY).
[23] B. Dolensky, R. Konvalinka, M. Jakubek, V. Kral, J. Mol. Struct. 2013, 1035, 124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVKiu74%3D&md5=dd099f8e79faf2f1160cff52da29df4aCAS |
[24] S. S. Chen, Y. Zhao, J. Fan, T. Okamura, Z. S. Bai, Z. H. Chen, W. Y. Sun, CrystEngComm 2012, 14, 3564.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFGlsLY%3D&md5=5ab61d6029c010c2238796f63d644317CAS |
[25] S. Pandey, P. P. Das, A. K. Singh, R. Mukherjee, Dalton Trans. 2011, 10758.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Kkt73E&md5=88a111643ab20ee594e2dd01969f647bCAS | 21952226PubMed |
[26] A. Kumar Singh, R. Mukherjee, Dalton Trans. 2005, 2886.
| Crossref | GoogleScholarGoogle Scholar | 16094477PubMed |
[27] S. Hazra, S. Majumder, M. Fleck, N. Aliaga-Alcalde, S. Mohanta, Polyhedron 2009, 28, 3707.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCjsrrO&md5=8bb1c67a9424e0c9330ced0b846608edCAS |
[28] F. Luo, Y. X. Che, J. M. Zheng, Cryst. Growth Des. 2008, 8, 176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVamsbnM&md5=9ff49bef95fd94ad2e455cfc015ccb4bCAS |
[29] M. Xue, G. S. Zhu, Y. X. Li, X. J. Zhao, Z. Jin, E. H. Kang, S. L. Qiu, Cryst. Growth Des. 2008, 8, 2478.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVGqsL8%3D&md5=dfc8df9b3795afd89ba6afef484210a2CAS |
[30] Y. Gong, T. Wu, J. H. Lin, B. S. Wang, CrystEngComm 2012, 14, 5649.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWiu7nF&md5=293a72d33de2c15fd265ff952969792cCAS |
[31] B. Liu, Z. T. Yu, J. Yang, H. Wu, Y. Y. Liu, J. F. Ma, Inorg. Chem. 2011, 50, 8967.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWhtLvF&md5=1f2014545f8209e4303e2cea836a86bcCAS | 21842843PubMed |
[32] W. Q. Kan, B. Liu, J. Yang, Y. Y. Liu, J. F. Ma, Cryst. Growth Des. 2012, 12, 2288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFCru78%3D&md5=addbbb006bd4a876cff9214eec9e1187CAS |
[33] A. K. Paul, R. Karthik, S. Natarajan, Cryst. Growth Des. 2011, 11, 5741.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlaqtrnN&md5=288452f08d534b25c5f9547fac3197efCAS |
[34] Y. F. Hsu, H. L. Hu, C. J. Wu, C. W. Yeh, D. M. Proserpio, J. D. Chen, CrystEngComm 2009, 11, 168.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCqsQ%3D%3D&md5=e3001f1adfba5b0ce6338cb7dda8930aCAS |
[35] X. L. Wang, B. Mu, H. Y. Lin, G. C. Liu, A. X. Tian, S. Yang, CrystEngComm 2012, 14, 1001.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVektA%3D%3D&md5=b4192950ac0c608f001dae5f64a8c688CAS |
[36] G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=59f548f8f29686b585f885edea91b42eCAS | 18156677PubMed |