Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Catalytic Applications of Chemically Grafted SiH-Functionalized Tripodal Ti-POSS Complexes in Crosslinked Hyperbranched Poly(siloxysilane)

Emad H. Aish
+ Author Affiliations
- Author Affiliations

Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia, and Department of Chemistry, Faculty of Science, Menoufiya University, Menoufiya, Egypt. Email: emad.aish@uky.edu; eaish@kfu.edu.sa

Australian Journal of Chemistry 68(7) 1091-1101 https://doi.org/10.1071/CH14525
Submitted: 27 August 2014  Accepted: 17 November 2014   Published: 24 February 2015

Abstract

This study investigated the synthesis, activity, epoxide selectivity, H2O2 efficiency, and recyclability of new heterogeneous alkene epoxidation catalysts prepared by chemical grafting of new SiH-functionalized tripodal Ti–polyhedral oligomeric silsesquioxane (Ti-POSS) complexes in hyperbranched poly(siloxysilane) via hydrosilation. Crosslinked hyperbranched poly(siloxysilane)-grafted [{(p-HSiMe2(CH2)2C6H4)(c-C6H11)6Si7O12}Ti(NMe2)] (11) and crosslinked hyperbranched poly(siloxysilane)-grafted [{(HSiMe2(CH2)3)(i-C4H9)6Si7O12}- Ti(NMe2)] (12) displayed high activity, epoxide selectivity (≥98 %), and H2O2 efficiency (≥97 %) in cyclohexene and 1-octene epoxidation with aqueous H2O2. Moreover, these catalysts were highly recyclable with retained activity and durability and proved to be truly heterogeneous. Using chemical grafting for the synthesis of 11 and 12 enhanced their recyclability and durability with retained activity. The high H2O2 efficiency can be attributed to the uniformly non-polar environment provided about Ti in 11 and 12 by the polymer; this results in low water concentrations and higher [alkene] : [H2O2] ratios at the Ti active site than in the rest of the solution. These effects enhance the epoxide selectivity and minimize leaching of titanium.


References

[1]  M. Crocker, R. H. M. Herold, A. G. Orpen, Chem. Commun. 1997, 2411.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  M. Crocker, R. H. M. Herold, A. G. Orpen, M. T. A. Overgaag, J. Chem. Soc., Dalton Trans. 1999, 3791.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvVygt7g%3D&md5=9aaef3e4eae37569a48bbf351b5cb217CAS |

[3]  J. K. F. Buijink, J. J. M. van Vlaanderen, M. Crocker, F. G. M. Niele, Catal. Today 2004, 93–95, 199.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  H. P. Wulff, British Patent 1,249,079, 1971.

[5]  R. Hutter, T. Mallat, D. Dutoit, A. Baiker, Top. Catal. 1996, 3, 421.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvFKmt78%3D&md5=dc51c9a3045874a5d959037079278cfeCAS |

[6]  M. Taramasso, G. Perego, B. Notari, U. S. Patent 4,410,501, 1983.

[7]  M. G. Clerici, P. Ingallina, J. Catal. 1993, 140, 71.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvFSqtbc%3D&md5=a160e89b5670e03c6f47556c3a3cbc74CAS |

[8]  A. Tuel, L. G. Hubert-Pfalzgraf, J. Catal. 2003, 217, 343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVKjsrs%3D&md5=ad4a797f4c9254b0e25262e326f42920CAS |

[9]  Q. Yuan, A. Hagen, F. Roessner, Appl. Catal., A 2006, 303, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVamtbc%3D&md5=dafaf1ad7da3a3531eacb6ff4dee2140CAS |

[10]  M. C. Capel-Sanchez, J. M. Campos-Martin, J. L. G. Fierro, M. P. de Frutos, A. P. Polo, Chem. Commun. 2000, 855.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivFGqu70%3D&md5=d0d5c1f5d905d6a545810e39370ed3d5CAS |

[11]  E. H. Aish, M. Crocker, F. Ladipo, J. Catal. 2010, 273, 66.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFWisLY%3D&md5=dd979ef3f3832b111e464496bd7012d5CAS |

[12]  S. Krijnen, H. C. L. Abbenhuis, J. H. C. Van Hoof, R. A. Van Santen, Angew. Chem. Int. Ed. 1998, 37, 356.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsFGqsbg%3D&md5=bf3525b982b2f7b8349031acf7255ea2CAS |

[13]  L. Zhang, H. C. L. Abbenhuis, G. Gerritsen, N. N. Bhriain, P. C. M. M. Magusin, B. Mezari, W. Han, R. A. van Santen, Q. Yang, C. Li, Chemistry 2007, 13, 1210.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlyntro%3D&md5=a37276a4d3b5f54b630ab92c970d7dd8CAS | 17066470PubMed |

[14]  M. D. Skowronska-Ptasinska, M. L. W. Vorstenbosch, R. A. van Santen, H. C. L. Abbenhuis, Angew. Chem. Int. Ed. 2002, 41, 637.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvF2ntLs%3D&md5=a8159d5c059debcc2dddfe996bc9a823CAS |

[15]  K. Wada, T.-a. Mitsudo, Catal. Surv. Asia 2005, 9, 229.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFCkurw%3D&md5=b84069c77e43618759c5cc59256625ebCAS |

[16]  P. Smet, J. Riondato, T. Pauwels, L. Moens, L. Verdonck, Inorg. Chem. Commun. 2000, 3, 557.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVemt7g%3D&md5=365e78ecb4c62b285e00c6ae1b11d0e0CAS |

[17]  K. Wada, K. Hirabayashi, N. Watanabe, S. Yamamoto, T. Kondo, T.-A. Mitsudo, M. Inoue, Top. Catal. 2009, 52, 693.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFKgu7c%3D&md5=bd2ee91395ea969c41bdbedc2b7e9f08CAS |

[18]  R. F. Parton, I. F. J. Vankelecom, D. Tas, K. B. M. Janssen, P.-P. Knops-Gerrits, P. A. Jacobs, J. Mol. Catal. Chem. 1996, 113, 283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvVSksrY%3D&md5=48a31ed575d8519f63ccc76421fb8687CAS |

[19]  N. M. B. Smeets, Eur. Polym. J. 2013, 49, 2528.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVShtrjN&md5=005c035768510ee9f51fae6a8008fcabCAS |

[20]  D. E. Bergbreiter, ACS Macro Lett. 2014, 3, 260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt12qtL4%3D&md5=d1332b7f3ee22579f6179cb8e46a4c26CAS |

[21]  W. L. F. Armarego, D. D. Perrin, Purification of Laboratory Chemicals, 4th edn 1997 (Butterworth-Heinemann: Oxford, UK).

[22]  T. S. Haddad, B. D. Viers, S. H. Phillips, J. Inorg. Organomet. Polym. 2001, 11, 155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFylsbY%3D&md5=af09e8f574ed542733645d5109c068e8CAS |

[23]  D. C. Bradley, I. M. Thomas, J. Chem. Soc. 1960, 3857.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXislyktg%3D%3D&md5=2a4fcb810ab61b47dad604b590e29e01CAS |

[24]  S. Rubinsztajn, J. Inorg. Organomet. Polym. 1994, 4, 61.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtlShtg%3D%3D&md5=5a17f81fd57e40c7c486be4fd8407572CAS |

[25]  F. J. Feher, T. A. Budzichowski, K. Rahimian, J. W. Ziller, J. Am. Chem. Soc. 1992, 114, 3859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitFCmurw%3D&md5=381406bd757173dacda6f606586641f5CAS |

[26]  I. E. Buys, T. W. Hambley, D. J. Houlton, T. Maschmeyer, A. F. Masters, A. K. Smith, J. Mol. Catal. 1994, 86, 309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFyrsLs%3D&md5=14856cda4bd67217de13f1e8e6c93349CAS |

[27]  W. Fan, P. Wu, T. Tatsumi, J. Catal. 2008, 256, 62.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVSmtrg%3D&md5=a83e6a2818ddb52a43d946505c0e8a11CAS |

[28]  G. Bellussi, M. S. Rigutto, Stud. Surf. Sci. Catal. 1994, 85, 177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtl2iur8%3D&md5=566c18186f87025fadaa6f6be7716e6bCAS |

[29]  B. Notari, Catal. Today 1993, 18, 163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtFOrt7c%3D&md5=4d0d038fff795628856779a7b04a3b33CAS |

[30]  R. Neumann, M. Levin-Elad, J. Catal. 1997, 166, 206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Gntro%3D&md5=f7e515bb465c926f425fd0aa079723feCAS |

[31]  G. Langhendries, D. E. De Vos, G. V. Baron, P. A. Jacobs, J. Catal. 1999, 187, 453.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1Oktrs%3D&md5=6c8bc96868a790fa2a2d87b22c660e70CAS |

[32]  D. E. De Vos, G. V. Baron, F. van Laar, P. A. Jacobs, Nanostruct Catal. 2003, 311.
         | 1:CAS:528:DC%2BD3sXntlajt7c%3D&md5=801914863d9bd57d23b44958367b50c2CAS |

[33]  J. N. Lee, C. Park, G. M. Whitesides, Anal. Chem. 2003, 75, 6544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvFOisbY%3D&md5=06e086705cbfe155028d3e56ad516141CAS | 14640726PubMed |

[34]  T. Giovenzana, M. Guidotti, E. Lucenti, A. O. Biroli, L. Sordelli, A. Sironi, R. Ugo, Organometallics 2010, 29, 6687.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVaqsL%2FN&md5=096f7644230c8904293bff45a406a5eeCAS |