Ethanolic RAFT Dispersion Polymerization of 2-(Naphthalen-2-yloxy)ethyl Methacrylate and 2-Phenoxyethyl Methacrylate with Poly[2-(dimethylamino)ethyl Methacrylate] Macro-Chain Transfer Agents
Yiwen Pei A B , Nadia C. Dharsana A and Andrew B. Lowe A B CA School of Chemical Engineering, Centre for Advanced Macromolecular Design, University of New South Wales, Kensington, Sydney, NSW 2052, Australia.
B Current address: Nanochemistry Research Institute (NRI) & Department of Chemistry, Curtin University, Bentley Campus, Bentley, Perth, WA 6102, Australia.
C Corresponding author. Email: a.lowe@unsw.edu.au
Australian Journal of Chemistry 68(6) 939-945 https://doi.org/10.1071/CH14490
Submitted: 5 August 2014 Accepted: 7 September 2014 Published: 9 December 2014
Abstract
The ethanolic reversible addition-fragmentation chain transfer dispersion polymerization (RAFTDP), at 21 wt-%, of 2-(naphthalen-2-yloxy)ethyl methacrylate (NOEMA) and 2-phenoxyethyl methacrylate (POEMA) with a poly[2-(dimethylamino)ethyl methacrylate] macro-chain transfer agent (CTA) with an average degree of polymerization of 20 (PDMAEMA20) is described. DMAEMA20-b-NOEMAy (y = 20–125) block copolymers were readily prepared under dispersion conditions in ethanol at 70°C. However, the polymerization of NOEMA was not well controlled, with size exclusion chromatograms being distinctly bi or multimodal with measured dispersities . Though NOEMA copolymerization was not ideal, the resulting series of block copolymers did exhibit the anticipated full spectrum of nanoparticle morphologies (spheres, worms, and vesicles). Interestingly, these morphology transitions occurred over a relatively narrow range of block copolymer compositions. In the case of POEMA, copolymerization was also poorly controlled with 1.50 ≤ ĐM ≤ 1.83 for the series of DMAEMA20-b-POEMAy copolymers. In contrast to the NOEMA-based copolymers, the POEMA series only yielded nanoparticles with a spherical morphology whose size increased with increasing average degrees of polymerization of the POEMA block. Collectively, though both NOEMA and POEMA can be utilized in ethanolic RAFT dispersion polymerization formulations, these preliminary studies suggest that neither appears to be an ideal aryl methacrylate choice as comonomer, especially if the goal is to combine the synthesis of well-defined copolymers with efficient nanoparticle formation.
References
[1] Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1aqsbvL&md5=fb736bd50a6b1f97fe03068c0d0939a8CAS | 22776960PubMed |
[2] G. Riess, Prog. Polym. Sci. 2003, 28, 1107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvVCnsbw%3D&md5=a878f8e3326f99a54bdb8ae6b12a790aCAS |
[3] D. E. Discher, A. Eisenberg, Science 2002, 297, 967.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1Clsbs%3D&md5=337e2102f73ac14be73a0fcfd5df9be9CAS | 12169723PubMed |
[4] T. Nicolai, O. Colombani, C. Chassenieux, Soft Matter 2010, 6, 3111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlyktrs%3D&md5=797b74ee071b060040afce108a626ca2CAS |
[5] S. J. Holder, N. A. J. M. Sommerdijk, Polym. Chem. 2011, 2, 1018.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltF2rtLw%3D&md5=eb03b6b2009ae340ac2f0ccbef52a1a4CAS |
[6] E. B. Zhulina, O. V. Borisov, Macromolecules 2012, 45, 4429.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsVGlsr4%3D&md5=13c223e043dacdf3084824f3bef38337CAS |
[7] L. Jia, D. Lévy, D. Durand, M. Impéror-Clec, A. Cao, M.-H. Li, Soft Matter 2011, 7, 7395.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1Wnurc%3D&md5=6300833c73c79191a928a7db94377a6cCAS |
[8] B. Yu, A. B. Lowe, K. Ishihara, Biomacromolecules 2009, 10, 950.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitlSmsLs%3D&md5=eb6e78e1824f743ffd8b43a98fcc31e6CAS | 19243090PubMed |
[9] P. J. Roth, T. P. Davis, A. B. Lowe, Polym. Chem. 2012, 3, 2228.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1Sqsbc%3D&md5=c30c3b0ee815d884a2d3b85cc147231fCAS |
[10] P. J. Roth, T. P. Davis, A. B. Lowe, Macromolecules 2012, 45, 3221.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVKmsbw%3D&md5=1dcbe80dabf63db071c2539791cb80fbCAS |
[11] D. Roy, W. L. A. Brooks, B. S. Sumerlin, Chem. Soc. Rev. 2013, 42, 7214.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WisbzF&md5=fd1456e6c41f24a7dc80653bd308780cCAS | 23450220PubMed |
[12] Y. Mitsukami, A. Hashidzume, S.-I. Yusa, Y. Morishima, A. B. Lowe, C. L. McCormick, Polymer 2006, 47, 4333.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt12luro%3D&md5=56601937d862cc0e414786476a7adcecCAS |
[13] J. Y. Quek, P. J. Roth, R. A. Evans, T. P. Davis, A. B. Lowe, J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 394.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFOmtbzP&md5=e206a8a167eba9e1bf5d22e67bfe0210CAS |
[14] A. B. Lowe, E. Wang, V. Tiriveedhi, P. Butko, C. L. McCormick, Macromol. Chem. Phys. 2007, 208, 2339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOnsrnN&md5=75b430c606a63a2cbb0d4106f04290beCAS |
[15] S. Dai, P. Ravi, K. C. Tam, Soft Matter 2008, 4, 435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlCisr8%3D&md5=0fcc0d4f74135533e7f53d1170c4595cCAS |
[16] P. J. Roth, J. Y. Quek, Y. Zhu, B. M. Blunden, A. B. Lowe, Chem. Commun. 2014, 50, 9561.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSgtLvL&md5=666f352993696615eeae7737d310783bCAS |
[17] Z. Tuzar, H. Pospisil, J. Plestil, A. B. Lowe, F. L. Baines, N. C. Billingham, S. P. Armes, Macromolecules 1997, 30, 2509.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitFymtL0%3D&md5=515c11f4e66a1204c6ab581813c3bbf1CAS |
[18] D. A. Rankin, A. B. Lowe, Macromolecules 2008, 41, 614.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFKiug%3D%3D&md5=70a1784313614e76dd652707a23e39fdCAS |
[19] K. Yao, C. Tang, J. Zhang, C. Bunyard, Polym. Chem. 2013, 4, 528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtl2muw%3D%3D&md5=4468104c8fe1d9f0732c8880d67461fbCAS |
[20] A. B. Lowe, N. C. Billingham, S. P. Armes, Macromolecules 1999, 32, 2141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhslKhur0%3D&md5=57194b2243d1a841243424d04339e6c7CAS |
[21] D. Wang, T. Wu, X. Wan, X. Wang, S. Liu, Langmuir 2007, 23, 11866.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFCisLjE&md5=8ec7b164647f8b34bc133a3ebbd94909CAS | 17929848PubMed |
[22] A. B. Lowe, C. L. McCormick, Chem. Rev. 2002, 102, 4177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFSrur8%3D&md5=3c0fbfbc5cb6b3862b043b2ba86faa68CAS | 12428987PubMed |
[23] M. S. Donovan, A. B. Lowe, T. A. Sanford, C. L. McCormick, J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 1262.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFCnt7k%3D&md5=e6cdc5110936c12f0bfbf45440b11324CAS |
[24] Y. Pei, N. C. Dharsana, J. A. van Hensbergen, R. P. Burford, P. J. Roth, A. B. Lowe, Soft Matter 2014, 10, 5787.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKrsLrJ&md5=96afe854d09de66550b70b914aac084dCAS | 24975501PubMed |
[25] S. Abbas, Z. Li, H. Hassan, T. P. Lodge, Macromolecules 2007, 40, 4048.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks12ms7Y%3D&md5=a2b133e7f6a67fd2f4454c37d93148b8CAS |
[26] I. LaRue, M. Adam, M. Pitsikalis, N. Hadjichristdis, M. Rubenstein, S. S. Sheiko, Macromolecules 2006, 39, 309.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1aku7nE&md5=42fb867a297a36cc5eabe15ead3b04cdCAS |
[27] Y. Pei, A. B. Lowe, Polym. Chem. 2014, 5, 2342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjslGmsb0%3D&md5=a9f605257192852c6a03a888368e0231CAS |
[28] D. Zehm, L. P. D. Ratcliffe, S. P. Armes, Macromolecules 2013, 46, 128.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVersL7F&md5=6003ef9791ac53993a834aa1265e3c9dCAS |
[29] S. Sugihara, A. Blanazs, S. P. Armes, A. J. Ryan, A. L. Lewis, J. Am. Chem. Soc. 2011, 133, 15707.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCgsL%2FJ&md5=ed3ab1011a6ec242c49665d819ffcf36CAS | 21854065PubMed |
[30] M. Semsarilar, V. Ladmiral, A. Blanazs, S. P. Armes, Langmuir 2013, 29, 7416.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOmu73F&md5=d285a4b49182246f07355be8fb29f29bCAS | 23205729PubMed |
[31] M. Semsarilar, E. R. Jones, A. Blanazs, S. P. Armes, Adv. Mater. 2012, 24, 3378.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntlSnurY%3D&md5=6a5c7164bcfa48ddd9789472060bb667CAS | 22605479PubMed |
[32] V. Ladmiral, M. Semsarilar, I. Canton, S. P. Armes, J. Am. Chem. Soc. 2013, 135, 13574.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1OjtbvM&md5=798583b1dd61b302bee598559b811e57CAS | 23941545PubMed |
[33] L. A. Fielding, M. J. Derry, V. Ladmiral, J. Rosselgong, A. M. Rodrigues, L. P. D. Ratcliffe, S. Sugihara, S. P. Armes, Chem. Sci. 2013, 4, 2081.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVOltrs%3D&md5=414c9779b9773223701e68197ea7044dCAS |
[34] A. Blanazs, A. J. Ryan, S. P. Armes, Macromolecules 2012, 45, 5099.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFemtrc%3D&md5=b0ea68b796701ee0e8623fc09cc72a1eCAS |
[35] J.-T. Sun, C.-Y. Hong, C.-Y. Pan, Polym. Chem. 2013, 4, 873.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlelt7g%3D&md5=d67356b30e1f49714dcad5e5ab676d71CAS |
[36] W. M. Wan, X. L. Sun, C. Y. Pan, Macromol. Rapid Commun. 2010, 31, 399.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFejt7k%3D&md5=849fd602cf810fb125aec23f7ad556cfCAS | 21590920PubMed |
[37] W.-M. Wan, C.-Y. Pan, Polym. Chem. 2010, 1, 1475.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2msLbO&md5=d18bb37337bdf18c14111d9e05cbbef7CAS |
[38] W.-D. He, X.-L. Sun, W.-M. Wan, C.-Y. Pan, Macromolecules 2011, 44, 3358.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFarsb8%3D&md5=f7a910f5938ca329bcab6fccaa1b8bacCAS |
[39] C.-Q. Huang, C.-Y. Pan, Polymer 2010, 51, 5115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSgtrvO&md5=7fb77f46a289a4c17d7ebb33b14f4337CAS |
[40] J. Jennings, M. Beija, J. T. Kennon, H. Willcock, R. K. O’Reilly, S. Rimmer, S. M. Howdle, Macromolecules 2013, 46, 6843.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlCht7fP&md5=26107305c2ee331509024255f761f09cCAS |
[41] M. Zong, K. J. Thurecht, S. M. Howdle, Chem. Commun. 2008, 5942.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSqtbzP&md5=bbc2786db8931ccecd63141962852638CAS |
[42] L. Houillot, C. Bui, C. Farcet, C. Moire, J. A. Raust, H. Pasch, M. Save, B. Charleux, ACS Appl. Mater. Interfaces 2010, 2, 434.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1Sgsw%3D%3D&md5=aba80a903691a523f0b126af964a96e5CAS | 20356189PubMed |
[43] J. Rieger, C. Grazon, B. Charleux, D. Alaimo, C. Jérôme, J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 2373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVOjsb4%3D&md5=2341a06a10ec57f3ff80b3f55df3dd13CAS |
[44] M. J. Warren, S. P. Armes, J. Am. Chem. Soc. 2014, 136, 10174.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVGlu7bM&md5=8124122cdf51b170b02602db9d498bb7CAS |
[45] R. Verber, A. Blanazs, S. P. Armes, Soft Matter 2012, 8, 9915.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlekurnK&md5=0390be1d7bb01a5b1ea9168e117c10d3CAS |
[46] A. Blanazs, R. Verber, O. O. Mykhaylyk, A. J. Ryan, J. Z. Heath, C. W. I. Doudlas, S. P. Armes, J. Am. Chem. Soc. 2012, 134, 9741.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFWqs7o%3D&md5=8c99629f1770de7d692622e35912ffacCAS | 22582795PubMed |
[47] S. H. Thang, Y. K. Chong, R. T. A. Mayadunne, G. Moad, E. Rizzardo, Tetrahedron Lett. 1999, 40, 2435.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVeksL0%3D&md5=263e75731636d684fffcb2f471fd78b2CAS |
[48] P. Chambon, A. Blanazs, G. Battaglia, S. P. Armes, Macromolecules 2012, 45, 5081.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlSnurc%3D&md5=f07cc8767ba319df35a606b70d735c8fCAS |
[49] L. P. D. Ratcliffe, A. Blanazs, C. N. Williams, S. L. Brown, S. P. Armes, Polym. Chem. 2014, 5, 3643.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXns1Wju7c%3D&md5=691179b52ec342164cac82521dcddf40CAS |
[50] T. Pal, T. K. Gosh, A. Pal, Indian J. Chem. 2001, 40B, 850.
| 1:CAS:528:DC%2BD3MXntlSjt7s%3D&md5=a689b1996c21480b235cebd85f88d5d4CAS |
[51] H. Maeda, T. Maeda, K. Mizuno, Molecules 2012, 17, 5108.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFWls70%3D&md5=0e907f691df8bab18b41928339d442d4CAS | 22555299PubMed |
[52] G. Weber, F. J. Farris, Biochemistry 1979, 18, 3075.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXkslWiurk%3D&md5=f6f60f9f1c7d822112e966babf07f77cCAS | 465454PubMed |
[53] W. Yuan, J. Yuan, M. Zhou, C. Pan, J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 2788.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVOiurs%3D&md5=fa820c901ac45626fb05ab8991db21d4CAS |
[54] R. D. Stramel, C. Nguyen, S. E. Webber, M. A. J. Rodgers, J. Phys. Chem. 1988, 92, 2934.
| Crossref | GoogleScholarGoogle Scholar |
[55] S. Meuer, L. Braun, R. Zentel, Macromol. Chem. Phys. 2009, 210, 1528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGktrbO&md5=98d10e95359f20f59b30f6e429e87896CAS |