Modelling of Transition State in Grignard Reaction of Rigid N-(Aryl)imino-Acenapthenone (Ar-BIAO): A Combined Experimental and Computational Study
Srinivas Anga A , Sayak Das Gupta A , Supriya Rej A , Bhabani S. Mallik A B and Tarun K. Panda A BA Department of Chemistry, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram 502205, Telengana, India.
B Corresponding authors. Email: tpanda@iith.ac.in; bhabani@iith.ac.in
Australian Journal of Chemistry 68(6) 931-938 https://doi.org/10.1071/CH14399
Submitted: 19 June 2014 Accepted: 5 September 2014 Published: 1 December 2014
Abstract
We present a combined synthetic and computational study on the addition of Grignard reagents RMgBr/RMgI (R = Me, Et) to various sterically rigid N-(aryl)imino-acenapthenone (Ar-BIAO) (Ar = 2,6-iPr2C6H3 (1), 2,6-Me2C6H3 (2), and 2,4,6-Me3C6H2 (3) ligands). In the experimental method, when compounds 1–3 were treated with RMgBr (R = Me, Et) at room temperature, the corresponding racemic N-(aryl)imino-acenapthylene-1-ol (Ar-BIAOH) compounds (Ar = 2,6- iPr2C6H3, R = Me (1a), Et (1b); Ar = 2,6-Me2C6H3, R = Me (2a), Et (2b); and Ar = 2,4,6-Me3C6H2, R = Me (3a), Et (3b)) were obtained in yields up to 82 %. The Ar-BIAOH compounds were characterized by spectroscopic and combustion analyses. The solid state structures of compounds 1a–3a were established by single-crystal X-ray diffraction analysis. To model the transition state of the Grignard reaction with asymmetrical and sterically rigid Ar-BIAO ligands having three fused rings containing exo-cyclic carbonyl and imine functionalities, we carried out computational analysis. During our study, we have considered the gas phase addition of CH3MgBr to 2 and the model system of 2-(methylimino)pentanone (2′). We have carried out ab initio (HF/3–21G*) and density functional theory calculations with the hybrid density functional B3LYP/6–311+G(2d,p) to probe two major aspects: (1) the stability of an intra-molecular chelation involving magnesium, carbonyl oxygen, and imine nitrogen and (2) to suggest a probable transition state and a mechanistic pathway. The computational investigation suggests the formation of a tetra-coordinated magnesium complex as the transition state for the Grignard reaction.
References
[1] For the presentation speech of Francois Auguste Victor Grignard’s 1912 Nobel Prize, see: http://www.nobel.se/chemistry/laureates/1912/press.html (accessed 28 October 2014)[2] R. Fu, J. L Ye, J. X. Dai, Y. P. Ruan, P. Q. Huang, J. Org. Chem. 2010, 75, 4230.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFOlurg%3D&md5=7f3a944792c487a96ef4876d36a10495CAS |
[3] M. Hatano, O. Ito, S. Suzuki, K. Ishihara, J. Org. Chem. 2010, 75, 5008.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1Wrur0%3D&md5=2d668622a6b29734b39430f00f8a4f7cCAS | 20560525PubMed |
[4] D. Seyferth, Organometallics 2009, 28, 1598.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVeis70%3D&md5=d9171db65c0af953f5b2d5c671bb77a1CAS |
[5] V. Schulze, P. G. Nell, A. Burton, R. W. Hoffman, J. Org. Chem. 2003, 68, 4546.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlKjtbk%3D&md5=70800fcd49de6b084122627a04c69dfaCAS | 12762767PubMed |
[6] S. Yamazaki, S. Yamabe, J. Org. Chem. 2002, 67, 9346.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVChtL8%3D&md5=dcc998b2ec911892ecddfac64dd95a74CAS | 12492337PubMed |
[7] E. C. Ashby, G. E. Parris, J. Am. Chem. Soc. 1971, 93, 1206.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXpvFWhsg%3D%3D&md5=e60481b5408b915aeb2de6c9c39cda0eCAS |
[8] L. J. Guggenberger, R. E. Rundle, J. Am. Chem. Soc. 1968, 90, 5375.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXkvFSqurk%3D&md5=74b361810e7ca5410f354024d9ec57b8CAS |
[9] A. M. Henriques, A. G. H. Barbosa, J. Phys. Chem. A 2011, 115, 12259.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWjt7bJ&md5=55ccce3de5c90aeaccbe53404137cd72CAS | 21995269PubMed |
[10] H. Lioe, J. M. White, R. A. J. O’Hair, J. Mol. Model. 2011, 17, 1325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXms1GgtLo%3D&md5=57c2314e6b7fa3bf5bbfc8621f7c5d8aCAS | 20820825PubMed |
[11] D. J. Cram, F. A. A. Elhafez, J. Am. Chem. Soc. 1952, 74, 5828.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2cXhsVGrsQ%3D%3D&md5=0219be2feecff203cc2f6146407f7eeaCAS |
[12] V. S. Safont, V. Moliner, M. Oliva, R. Castillo, J. Andres, F. Gonzalez, M. Carda, J. Org. Chem. 1996, 61, 3467.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisF2rt7g%3D&md5=b706b4da20b3e3041fcaf5426a3f9b14CAS |
[13] R. J. Smith, M. Trzoss, M. Bühl, S. Bienz, Eur. J. Org. Chem. 2002, 2770.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVKmtr0%3D&md5=e380855cadc49dc6b0bc8749671398ceCAS |
[14] J. L. Ye, P. Q. Huang, X. Lu, J. Org. Chem. 2007, 72, 35.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlaju7%2FM&md5=23ccde08a2cf961194fc28c45538b73aCAS | 17194079PubMed |
[15] S. E. Baillie, W. Clegg, P. García-Álvarez, E. Hevia, A. R. Kennedy, J. Klett, L. Russo, Organometallics 2012, 31, 5131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVKksb8%3D&md5=0264cd1c1c840dcb9bb7faeb1a998d09CAS |
[16] R. Armstrong, W. Clegg, P. García-Álvarez, M. D. McCall, L. Nuttall, A. R. Kennedy, L. Russo, E. Hevia,, Chem. – Eur. J. 2011, 17, 4470.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktFGktr4%3D&md5=7a9e55b4afd17b30eb8008dd265931f2CAS |
[17] (a) S. Anga, M. Paul, K. Naktode, R. K. Kottalanka, T. K. Panda, Z. Anorg. Allg. Chem. 2012, 638, 1311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1Klurk%3D&md5=67457b31cc4b1b06ccdb9dfa90eec8bbCAS |
(b) S. Anga, T. Pal, R. K. Kottalanka, M. Paul, T. K. Panda, Can. Chem. Trans. 2013, 1, 105.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Anga, S. Biswas, R. K. Kottalanka, B. S. Mallik, T. K. Panda, Can. Chem. Trans. 2014, 2, 72.
| Crossref | GoogleScholarGoogle Scholar |
[18] J. Kovach, M. Peralta, W. W. Brennessel, W. D. Jones, J. Mol. Struct. 2011, 992, 33.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Gmtro%3D&md5=ba8b8cca781c5fd477166ae1df02ad84CAS |
[19] (a) M. Jeon, C. J. Han, S. Y. Kim, Macromol. Res. 2006, 14, 306.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVGrtL4%3D&md5=1582aeb3778cd304aa5961b4c4b5ac1cCAS |
(b) B. L. Small, R. Rios, E. R. Fernandez, D. L. Gerlach, J. Halfen, M. J. Carney, Organometallics 2010, 29, 6723.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. M. Schmiege, M. J. Carney, B. L. Small, D. L. Gerlach, J. A. Halfen, Dalton Trans. 2007, 2547.
| Crossref | GoogleScholarGoogle Scholar |
[20] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision B.01 2010 (Gaussian, Inc.: Wallingford, CT).
[21] R. Dennington, T. Keith, J. Millam, GaussView Version 5 2009 (Semichem Inc.: Shawnee Mission, KS).
[22] (a) D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=bd225cbbb5eb5750cbd4a95028b56b80CAS |
(b) C. Lee, W. Yan, R. G. Parr, Phys. Rev. B. 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar |
[23] J. B. Foresman, T. M. Frisch, Exploring Chemistry with Electronic Structure Methods, Second Edition 1996 (Gaussian, Inc.: Pittsburgh, PA).
[24] C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, J. Comput. Chem. 1996, 17, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XpvFSi&md5=e61bde27506c9794bccc7c95df9b73ddCAS |
[25] A. Altomare, M. C. Burla, G. Camalli, G. Cascarano, C. Giacovazzo, A. Gualiardi, G. Polidori, J. Appl. Crystallogr. 1994, 27, 435.
| Crossref | GoogleScholarGoogle Scholar |
[26] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=e60798290754f1a9dfe9beb4e8e0b93dCAS |