Probing the Mode of Neurotransmitter Binding to GABA Receptors Using Selectively Fluorinated GABA Analogues
Nathan Absalom A , Izumi Yamamoto A B , David O’Hagan C , Luke Hunter D and Mary Chebib A EA Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia.
B Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan.
C School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
D School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia.
E Corresponding author. Email: mary.collins@sydney.edu.au
Nathan Absalom was awarded his Ph.D. degree by the University of New South Wales in 2004, where he studied the activation mechanisms of ligand-gated ion channels. He was awarded a Wellcome Trust Training Fellowship to work at the University of Oxford and the MRC Harwell before taking a post-doctoral position researching the pharmacology of ion channels at the University of Sydney in 2009. |
Izumi Yamamoto obtained her Ph.D. degree from the University of Sydney in 2012, after which she joined a laboratory at the National Institute for Physiological Sciences in Japan as a post-doctoral researcher. She was awarded a post-doctoral fellowship by the Japan Society for the Promotion of Science (JSPS) in 2013. |
David O'Hagan is Professor of Organic Chemistry within the School of Chemistry at the University of St Andrews in Scotland, where he has research interests in organo-fluorine chemistry and fluorine related biochemistry. He studied undergraduate chemistry at the University of Glasgow and did his Ph.D. studies at Southampton University. After a post-doctoral term with Heniz G. Floss at the Ohio State University, he took up his first academic position at the University of Durham in 1986, before moving to St Andrews University in 2000. He is currently Head of the School of Chemistry. |
Luke Hunter completed his Ph.D. degree at the University of Sydney in 2004. He undertook post-doctoral research at the University of Melbourne, the University of St Andrews, UNSW Australia, and the University of Sydney before taking up his current appointment at UNSW, where he is presently Senior Lecturer in Chemistry. Luke's interests are in the areas of natural product synthesis, peptidomimetics, and organofluorine chemistry. |
Mary Chebib completed her Ph.D. degree at Griffith University in 1994. She undertook post-doctoral research at the Department of Pharmacology, University of Sydney, before taking up her current appointment at the Faculty of Pharmacy, University of Sydney, where she is Professor of Pharmaceutical Neuroscience. Mary's interests are in the areas of medicinal chemistry, neuropharmacology, and ligand-gated ion channels. |
Australian Journal of Chemistry 68(1) 23-30 https://doi.org/10.1071/CH14456
Submitted: 18 July 2014 Accepted: 28 August 2014 Published: 20 October 2014
Abstract
Stereoselective fluorination is a useful technique for controlling the conformations of organic molecules. This concept has been exploited to create conformationally biased analogues of the neurotransmitter gamma-aminobutyric acid (GABA). Mono- and di-fluorinated GABA analogues are found to adopt different conformations, due to subtle stereoelectronic effects associated with the C–F bond. These conformationally biased GABA analogues exhibit different shape-dependent selectivity patterns towards GABAA, GABAB, and GABAC receptors, providing valuable information on the binding modes of the natural ligand at these medicinally important targets.
References
[1] B. Bettler, K. Kaupmann, J. Mosbacher, M. Gassmann, Physiol. Rev. 2004, 84, 835.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlCnu74%3D&md5=096cfb9c96f00e6a8b887ff8b06dc672CAS | 15269338PubMed |
[2] M. Chebib, G. A. Johnston, J. Med. Chem. 2000, 43, 1427.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitVGnurw%3D&md5=7ca0d63029698e7446b865410a688f44CAS | 10780899PubMed |
[3] P. C. Emson, Prog. Brain Res. 2007, 160, 43.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFGqtbk%3D&md5=cd76e322f33b966e8d1b4212a7921f65CAS | 17499108PubMed |
[4] M. Farrant, K. Kaila, Prog. Brain Res. 2007, 160, 59.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFGqtbc%3D&md5=534d6fb71228559859e84d84c24bb14bCAS | 17499109PubMed |
[5] G. A. Johnston, Curr. Pharm. Des 2005, 11, 1867.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFCru7c%3D&md5=1f444e74d13f683747e2e5a0264db069CAS | 15974965PubMed |
[6] I. Mody, R. A. Pearce, Trends Neurosci. 2004, 27, 569.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFCjtb0%3D&md5=c92dda4f0803270ed438793c71e0a99fCAS | 15331240PubMed |
[7] D. Benke, Biochem. Pharmacol. 2013, 86, 1525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1yqs7jE&md5=56d84a8bdbbbe8365cbb01b3f97b0205CAS | 24084431PubMed |
[8] J. R. Trudell, E. Bertaccini, M. B. Maciver, Anesth. Analg. 2012, 115, 270.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOjs7vM&md5=9c7bf99e66bc46cdec9d8a40bf13073aCAS | 22344244PubMed |
[9] E. Sigel, M. E. Steinmann, J. Biol. Chem. 2012, 287, 40224.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslansbjP&md5=7e593e1405a544e7ad21fb358bb5dc18CAS | 23038269PubMed |
[10] C. Bouzat, J. Physiol. 2012, 106, 23.
[11] K. Brejc, W. J. van Dijk, R. V. Klaassen, M. Schuurmans, J. van der Oost, A. B. Smit, T. K. Sixma, Nature 2001, 411, 269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvF2qsbc%3D&md5=40c4746feb720a08df8fac6e8f2f92fcCAS | 11357122PubMed |
[12] N. Bocquet, H. Nury, M. Baaden, C. Le Poupon, J. P. Changeux, M. Delarue, P. J. Corringer, Nature 2009, 457, 111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGhug%3D%3D&md5=86a62ff569328bd67b26b8847af2c66dCAS | 18987633PubMed |
[13] R. J. Hilf, R. Dutzler, Nature 2008, 452, 375.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFCnsLw%3D&md5=c9df97dd882a0df46203ec8c094518fdCAS | 18322461PubMed |
[14] R. J. Hilf, R. Dutzler, Nature 2009, 457, 115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGgsA%3D%3D&md5=6c2a63ad968750dfe30420f9ecd116ecCAS | 18987630PubMed |
[15] R. E. Hibbs, E. Gouaux, Nature 2011, 474, 54.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFyqt7Y%3D&md5=22be5a5e5f5c90bb7fcc4fab004509cbCAS | 21572436PubMed |
[16] The illustrated structure is based on the bacterial ELIC channel (ref. [13]).
[17] The extracellular portion is based on a crystal structure of the GABAB receptor (ref. [18]), while the transmembrane portion is based on a crystal structure of the G-protein coupled receptor rhodopsin (ref. [19]).
[18] Y. Geng, M. Bush, L. Mosyak, F. Wang, Q. R. Fan, Nature 2013, 504, 254.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFaru7vE&md5=3c8d1e2496127242ceedcfff51f31427CAS | 24305054PubMed |
[19] D. Fotiadis, Y. Liang, S. Filipek, D. A. Saperstein, A. Engel, K. Palczewski, FEBS Lett. 2004, 564, 281.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVemsb4%3D&md5=921051f5c36402f94e88f40312a0ab2aCAS | 15111110PubMed |
[20] P. Rondard, C. Goudet, J. Kniazeff, J. P. Pin, L. Prezeau, Neuropharmacology 2011, 60, 82.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVaitL3M&md5=cf11056fc17e76c37751fdc392bb9424CAS | 20713070PubMed |
[21] C. L. Padgett, P. A. Slesinger, Adv. Pharmacol. 2010, 58, 123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOgur3K&md5=bf106b41820a6205f62adb2aede84967CAS | 20655481PubMed |
[22] B. Duthey, S. Caudron, J. Perroy, B. Bettler, L. Fagni, J. P. Pin, L. Prézeau, J. Biol. Chem. 2002, 277, 3236.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVaksL8%3D&md5=f3e5d9e121b09284847b95cfa5c94f38CAS | 11711539PubMed |
[23] T. Galvez, B. Duthey, J. Kniazeff, J. Blahos, G. Rovelli, B. Bettler, L. Prézeau, J. P. Pin, EMBO J. 2001, 20, 2152.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsl2gu7s%3D&md5=d6cb99afcdcd44a5138ca01730cf3c9fCAS | 11331581PubMed |
[24] M. J. Robbins, A. R. Calver, A. K. Filippov, W. D. Hirst, R. B. Russell, M. D. Wood, S. Nasir, A. Couve, D. A. Brown, S. J. Moss, M. N. Pangalos, J. Neurosci. 2001, 21, 8043.
| 1:CAS:528:DC%2BD3MXoslGjsL4%3D&md5=f5f7244d9b7d949e2812399248380671CAS | 11588177PubMed |
[25] J. H. White, A. Wise, M. J. Main, A. Green, N. J. Fraser, G. H. Disney, A. A. Barnes, P. Emson, S. M. Foord, F. H. Marshall, Nature 1998, 396, 679.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisVensw%3D%3D&md5=6b26ae4f4e3b820e64272cc59f1784e5CAS | 9872316PubMed |
[26] J. Schwenk, M. Metz, G. Zolles, R. Turecek, T. Fritzius, W. Bildl, E. Tarusawa, A. Kulik, A. Unger, K. Ivankova, R. Seddik, J. Y. Tiao, M. Rajalu, J. Trojanova, V. Rohde, M. Gassmann, U. Schulte, B. Fakler, B. Bettler, Nature 2010, 465, 231.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVCjt7g%3D&md5=48a97fff76719c259221b878aa0bd4ebCAS | 20400944PubMed |
[27] R. Enz, G. R. Cutting, Vision Res. 1998, 38, 1431.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjs12nsbs%3D&md5=2a2255f6a2cfcc76cc5760d521363fd3CAS | 9667009PubMed |
[28] T. Ogurusu, K. Yanagi, M. Watanabe, M. Fukaya, R. Shingai, Receptor Channel 1999, 6, 463.
| 1:CAS:528:DC%2BD3cXhslyhsg%3D%3D&md5=0d03f25c0dfb5d7ead82e1320f823630CAS |
[29] W. Sieghart, Adv. Pharmacol. 2006, 54, 231.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsl2ksr0%3D&md5=987c7ce48bb12000f05758651648a23eCAS | 17175817PubMed |
[30] Y. Chang, R. Wang, S. Barot, D. S. Weiss, J. Neurosci. 1996, 16, 5415.
| 1:CAS:528:DyaK28Xlt1eis74%3D&md5=9dee8a0b07e21580b3021ec87d6b2118CAS | 8757254PubMed |
[31] S. J. Farrar, P. J. Whiting, T. P. Bonnert, R. M. McKernan, J. Biol. Chem. 1999, 274, 10100.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1Gjtrc%3D&md5=881c12763a981fadd0d5196d497da543CAS | 10187791PubMed |
[32] W. B. Im, J. F. Pregenzer, J. A. Binder, G. H. Dillon, G. L. Alberts, J. Biol. Chem. 1995, 270, 26063.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpt1ejtbw%3D&md5=0542fa5d3f8b5e27e9fca71e9731cf69CAS | 7592805PubMed |
[33] V. Tretter, N. Ehya, K. Fuchs, W. Sieghart, J. Neurosci. 1997, 17, 2728.
| 1:CAS:528:DyaK2sXisValtLY%3D&md5=c2545b19af81f25c83d00fe2f8887c63CAS | 9092594PubMed |
[34] G. B. Smith, R. W. Olsen, Trends Pharmacol. Sci. 1995, 16, 162.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtFCgt78%3D&md5=7d163502716a8ad7105fb542cc02398aCAS | 7624971PubMed |
[35] S. Pirker, C. Schwarzer, A. Wieselthaler, W. Sieghart, G. Sperk, Neuroscience 2000, 101, 815.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFemtLc%3D&md5=5d191b6a93af266d080eb46b4c9e495cCAS | 11113332PubMed |
[36] U. Rudolph, F. Crestani, H. Mohler, Trends Pharmacol. Sci. 2001, 22, 188.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1WnsbY%3D&md5=073fceaad3f633ba2bc25abcda61cd00CAS | 11282419PubMed |
[37] U. Rudolph, F. Knoflach, Nat. Rev. Drug Discov. 2011, 10, 685.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFKrtbc%3D&md5=0d66353398e0656929bffa325ea08150CAS | 21799515PubMed |
[38] B. K. Yee, R. Keist, L. von Boehmer, R. Studer, D. Benke, N. Hagenbuch, Y. Dong, R. C. Malenka, J. M. Fritschy, H. Bluethmann, J. Feldon, H. Möhler, U. Rudolph, Proc. Natl. Acad. Sci. USA 2005, 102, 17154.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1yksLbF&md5=f4ed8459489aa6bdd66efb5530b7734bCAS | 16284244PubMed |
[39] J. M. Hills, A. J. Sellers, J. Mistry, M. Broekman, W. Howson, Br. J. Pharmacol. 1991, 102, 5.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXpsFGqug%3D%3D&md5=c1135e9d2286e80ed8ddad5496fab0bcCAS | 1646062PubMed |
[40] P. S. Miller, A. R. Aricescu, Nature 2014, 512, 270.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslGitbw%3D&md5=e707d3da62ba6f46cebd3d27a41c1e0aCAS | 24909990PubMed |
[41] A. Miko, E. Werby, H. Sun, J. Healy, L. Zhang, J. Biol. Chem. 2004, 279, 22833.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1Gjurg%3D&md5=913127dabb56477ed2813a80eb8778bdCAS | 15014066PubMed |
[42] H. W. Dickenson, R. K. Duke, V. J. Balcar, R. D. Allan, G. A. R. Johnston, Mol. Neuropharmacol. 1990, 1, 1.
| 1:CAS:528:DyaK3MXlslGnu7o%3D&md5=3b8ce44e0d4f26314125e70ef90c54beCAS |
[43] D. L. Crittenden, M. Chebib, M. J. T. Jordan, J. Mol. Struct.: THEOCHEM 2005, 755, 81.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1yjt7nI&md5=a4948c729f9ad6e492e83e04e4ce6e48CAS |
[44] D. O’Hagan, Future. Med. Chem. 2011, 3, 189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFemuro%3D&md5=71f74d14735c1ec6c723feae1ed14ba2CAS | 21428814PubMed |
[45] M. Winkler, D. O’Hagan, Mol. Med. Med. Chem. 2012, 6, 299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1CitbjL&md5=f2c3dea8e0b75323fa587161e7e313d5CAS |
[46] L. Hunter, Chim. Oggi 2012, 30, 20.
| 1:CAS:528:DC%2BC38XhtFGjsbjJ&md5=067d286b81b7457d298e957de00ff191CAS |
[47] D. O’Hagan, Chem. Soc. Rev. 2008, 37, 308.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVGnsw%3D%3D&md5=1af86d6b5751ff745016ef7867e3a039CAS | 18197347PubMed |
[48] L. Hunter, Beilstein J. Org. Chem. 2010, 6, 1.
| Crossref | GoogleScholarGoogle Scholar |
[49] N. E. Gooseman, D. O’Hagan, M. J. Peach, A. M. Slawin, D. J. Tozer, R. J. Young, Angew. Chem. Int. Ed. 2007, 46, 5904.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlaltr0%3D&md5=0bc3d4378ed15e221035b37cebd4d27eCAS |
[50] A. Sun, D. C. Lankin, K. Hardcastle, J. P. Snyder, Chem. – Eur. J. 2005, 11, 1579.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVOmtLc%3D&md5=8870607a61c42340f27437b7a56c844bCAS | 15662680PubMed |
[51] I. Yamamoto, M. J. T. Jordan, N. Gavande, M. R. Doddareddy, M. Chebib, L. Hunter, Chem. Commun. 2012, 48, 829.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ersbnK&md5=ff59dbed978ea42943b725e9df83f911CAS |
[52] G. Deniau, A. M. Slawin, T. Lebl, F. Chorki, J. P. Issberner, T. van Mourik, J. M. Heygate, J. J. Lambert, L. A. Etherington, K. T. Sillar, D. O’Hagan, ChemBioChem 2007, 8, 2265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlentbc%3D&md5=a4811fc59d0b6596bf29ff422690ff67CAS | 17990263PubMed |
[53] I. Yamamoto, G. P. Deniau, N. Gavande, M. Chebib, G. A. R. Johnston, D. O’Hagan, Chem. Commun. 2011, 47, 7956.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotl2jsr8%3D&md5=0b25d41ff86dcb47e403b49023ccb8eeCAS |
[54] H. Abdel-Halim, J. R. Hanrahan, D. E. Hibbs, G. A. Johnston, M. Chebib, Chem. Biol. Drug Des. 2008, 71, 306.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFegu7Y%3D&md5=0657e5ef40774e8a4456b0f4e230e1aaCAS | 18312293PubMed |
[55] D. L. Crittenden, A. Park, J. Qiu, R. B. Silverman, R. K. Duke, G. A. Johnston, M. J. Jordan, M. Chebib, Bioorg. Med. Chem. 2006, 14, 447.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSiurrK&md5=78181d7d8d896ebd95a65c7fa6147d2fCAS | 16183289PubMed |
[56] R. K. Duke, M. Chebib, V. J. Balcar, R. D. Allan, K. N. Mewett, G. A. Johnston, J. Neurochem. 2000, 75, 2602.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFKnt70%3D&md5=90a1b78dbc9bb485de8ca0a3b80b2490CAS | 11080214PubMed |
[57] S. C. Lummis, N. J. Harrison, H. A. Lester, D. A. Dougherty, Chem. Biol. 2005, 12, 993.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVehs7%2FO&md5=c8021aa515a88a92f380efbfc77c40d3CAS | 16183023PubMed |
[58] L. Hunter, K. A. Jolliffe, M. J. T. Jordan, P. Jensen, R. B. Macquart, Chemistry 2011, 17, 2340.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVWrurw%3D&md5=13d60b883f97a552249824fe7681579dCAS | 21254269PubMed |
[59] X.-G. Hu, D. S. Thomas, R. Griffith, L. Hunter, Angew. Chem. Int. Ed. 2014, 53, 6176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXosV2hurg%3D&md5=bda61c27815714831dc9581108b96262CAS |