Fluoropolymers: Origin, Production, and Industrial and Commercial Applications
James GardinerCSIRO, Manufacturing Flagship, Bayview Avenue, Clayton, Vic. 3168, Australia. Email: james.gardiner@csiro.au
James Gardiner received a Ph.D. in chemistry from the University of Canterbury in 2004, having investigated new methods for peptidomimetic synthesis using metathesis chemistry under the supervision of Professor Andrew Abell. He then moved to ETH Zurich as a NZ FRST post-doctoral researcher with Professor Dr Dieter Seebach (2004–2007), investigating the synthesis and properties of β-peptides. In 2008, he relocated to Australia as an ARC Linkage Fellow at the University of Adelaide, and in 2009 worked as a research fellow with Professor Andrew Holmes at the University of Melbourne. In 2010, he joined the Commonwealth Scientific and Industrial Research Organisation (CSIRO) as a research scientist within the Manufacturing Flagship. His research interests include synthetic methods, fluorinated molecules and materials, polymers, peptides and peptidomimetics, and biomaterials. |
Australian Journal of Chemistry 68(1) 13-22 https://doi.org/10.1071/CH14165
Submitted: 21 March 2014 Accepted: 29 May 2014 Published: 12 August 2014
Abstract
Fluoropolymers have had a profound effect on all aspects of industry since their discovery during the 1930s. This review briefly describes the historical development of the fluoropolymer industry, with a focus on traditional fluoroplastics, and lists the major industrial and commercial materials currently in use. These include polytetrafluoroethylene (PTFE, Teflon), polychlorotrifluoroethylene (PCTFE), fluorinated ethylene propylene (FEP), the ethylene copolymer of tetrafluoroethylene (ETFE), the ethylene copolymer of chlorotrifluoroethylene (ECTFE), perfluoroalkoxy (PFA), polyvinylfluoride (PVF), polyvinyldifluoride (PVDF), Nafion, fluoroethylenevinylether (FEVE), a semicrystalline three component terpolymer of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride (THV), Teflon-AF, Cytop, and Hyflon. The production, processing, and properties of these fluoropolymers are discussed, together with examples of the specific uses in chemical industry, manufacturing, electronics, architecture, energy, health and domestic sectors. Other related fluoropolymers such as fluoroelastomers, perfluoropolyethers, and fluorosurfactants are briefly mentioned. Environmental aspects of fluoropolymers are considered as is the current state of the fluoropolymer industry.
References
[1] R. D. Chambers, Fluorine in Organic Chemistry 2004 (Blackwell: Oxford).[2] W. R. Dolbier, J. Fluor. Chem. 2005, 126, 157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVSisr4%3D&md5=3e36220284dcab30cbce3fe8785f8f4fCAS |
[3] S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVGgsw%3D%3D&md5=123973c73b7d27824cc24208fa2bdc2cCAS | 18197348PubMed |
[4] P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications 2013 (Wiley VCH: Darmstadt).
[5] www.fluorocouncil.com.
[6] K. Hitzner, T. Zipplies, D. P. Carlson, W. Schmiegel, in Ullmann’s Encyclopedia of Industrial Chemistry (Ed. W. Gerhartz) 2014, pp. 1–55 (Wiley-VCH: Weinheim).
[7] B. Ameduri, in Encyclopedia of Polymer Science and Technology (Ed. H. F. Mark) 2012, 1–33 (John Wiley & Sons: Hoboken, NJ).
[8] S. Ebnesajjad, in Applied Plastics Engineering Handbook (Ed. M. Kutz) 2011, pp. 49–60 (William Andrew: Waltham, MA).
[9] J. G. Drobny, Technology of Fluoropolymers, 2nd edn 2009 (Taylor & Francis Group, Boca Raton, USA).
[10] B. Ameduri, B. Boutevin, Well Architectured Fluoropolymers; Synthesis, Properties and Applications 2004 (Elselvier: Oxford).
[11] S. Ebnesajjad, Fluoroplastics, Volume 2: Melt Processible Fluoropolymers – The Definitive Users Guide 2003 (Plastics Design Library: Norwich, NY).
[12] D. W. Grainger, C. W. Stewart, in Fluorinated Surfaces, Coatings and Films, ACS Symposium Series (Eds D. G. Castner, D. W. Grainger, M. Pellerite, D. Anton) 2001, pp. 1–14 (American Chemical Society: Washington, D.C.).
[13] Fluoropolymers 2 (Eds G. Hougham, P. E. Cassidy, K. Johns, T. Davidson) 1999 (Kluwer Academic: Boston, MA).
[14] Modern Fluoropolymers (Ed. J. Scheirs) 1997 (John Wiley & Sons: Chichester).
[15] B. E. Smart, in Organofluorine Chemistry: Principles and Commercial Applications (Eds R. E. Banks, J. C. Tatlow, B. E. Smart) 1994, pp. 57–88 (Plenum Press, New York, NY).
[16] Synthesis Paper on Per- and Polyfluorinated Chemicals (PFCs) 2013 (OECD/ENEP Global PFC Group, Environment, Health and Safety, Environmental Directorate, OECD). Available at: www.oecd.org/env/ehs/risk-management/PFC_FINAL-Web.pdf
[17] H. Teng, Appl. Sci. 2012, 2, 496.
| Crossref | GoogleScholarGoogle Scholar |
[18] T. Okazoe, Proc. Jpn. Acad. B – Phys. 2009, 85, 276.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFejsrnK&md5=c97b8bc6435823b7a05baf8a0a4c345aCAS |
[19] R. E. Banks, J. Fluor. Chem. 1986, 33, 2.
[20] R. E. Banks, J. C. Tatlow, J. Fluor. Chem. 1986, 33, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtVyisro%3D&md5=09a3402df97e8f03afd3e5fad4c2b589CAS |
[21] IG-Farbenindustrie AG DRP 677071, 1934 (Schloffer/Scherer).
[22] Assigned to IG Farenindustrie AG, GB Patent, 465520, 1937.
[23] R. J. Plunkett, U.S. Patent 2 230 654 1941.
[24] B. Goldwhite, J. Fluor. Chem. 1986, 33, 109.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtVyisrs%3D&md5=460cb3f6f77620b385df48549f1b7ce4CAS |
[25] B. Morel, B. Duperret, J. Fluor. Chem. 2009, 130, 7.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWis7%2FE&md5=96bb10356229397ebf9b5f5eccef558fCAS |
[26] A. L. Dittman, J. M. Wrightson, U.S. Patent 2 636 908 1953.
[27] F. Boschet, B. Ameduri, Chem. Rev. 2014, 114, 927.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslyiu7bJ&md5=d94da282ff95d9ea8858ac9d366c90fcCAS | 24229048PubMed |
[28] K. A. Wood, in Coating Technology Handbook, 3rd edn (Ed. A. A. Tracton) 2006, pp. 83-1–83-5 (CRC Press: Boca Raton, FL).
[29] B. Ameduri, Chem. Rev. 2009, 109, 6632.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2nsL7O&md5=a2e19e912ba03e61a4ef04e2ecc4f246CAS | 19731907PubMed |
[30] W. Grot, Fluorinated Ionomers, 2nd edn 2011 (William Andrew: Waltham, MA).
[31] K. A. Mauritz, R. B. Moore, Chem. Rev. 2004, 104, 4535.
| 1:CAS:528:DC%2BD2cXns12rtrg%3D&md5=d7cb3bb91066ff6046fdc8322d4943f8CAS | 15669162PubMed |
[32] G. Gelbard, Ind. Eng. Chem. Res. 2005, 44, 8468.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSjt73E&md5=f0d9c1a8b9f520b265210e85becd7883CAS |
[33] R. Gore, U.S. Patent US3953566A 1976.
[34] www.lumiflon.com (accessed March 2014)
[35] T. Takakura, in Modern Fluoropolymers (Ed. J. Scheirs) 1997, Ch. 29, pp. 557–564 (Wiley Interscience: New York, NY).
[36] www2.dupont.com/Teflon_Industrial/en_US/products/product_by_name/teflon_af/index.html (accessed March 2014)
[37] www.agcce.com/Cytop.asp (accessed March 2014)
[38] D. A. Dixon, B. E. Smart, P. J. Krusic, N. Matsusawa, J. Fluor. Chem. 1995, 72, 209.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsVerurk%3D&md5=0563d093d7ceb389a30e79120211e6d5CAS |
[39] J. J. Weeks, E. S. Clark, R. K. Eby, Polymer 1981, 22, 1480.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xht1emu7s%3D&md5=ec176fbfe1adbf2c96235b4f46a23e0bCAS |
[40] (a) This electronic effect is also seen in small molecules. See for example: D. O’Hagan, Chem. Soc. Rev. 2008, 37, 308.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVGnsw%3D%3D&md5=1af86d6b5751ff745016ef7867e3a039CAS | 18197347PubMed |
(b) L. Hunter, Beilstein J. Org. Chem. 2010, 6, 38.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. E. Zimmer, C. Sparr, R. Gilmore, Angew. Chem. Int. Ed. 2011, 50, 11860.
| Crossref | GoogleScholarGoogle Scholar |
(d) T. L. March, M. R. Johnston, P. J. Duggan, J. Gardiner, Chem. Biodivers. 2012, 9, 2410.
| Crossref | GoogleScholarGoogle Scholar |
[41] K. Schmidt-Rohr, Q. Chen, Nat. Mater. 2008, 7, 75.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtleiuw%3D%3D&md5=569ad5a9e735737af3fd5523b47a3beaCAS | 18066069PubMed |
[42] Fluoropolymer Market by Type (PTFE, PVDF, FEP, Fluoroelastomers) & Application (Automotive, Electrical & Electronics, Chemical Processing, Industrial) – Global Trends & Forecast to 2018 [Online], September 2013. Available at: www.marketsandmarkets.com/Market-Reports/fluor-polymer-market-497.html
[43] C. W. Extrand, J. Flourine Chem. 2003, 122, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFOrs7Y%3D&md5=5045f6dd0903f16fd7ba709d12cf06bdCAS |
[44] A. Polyzos, M. O’Brien, T. P. Petersen, I. R. Baxendale, S. V. Ley, Angew. Chem. Int. Ed. 2011, 50, 1190.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKgtbo%3D&md5=7ff92e622f8af3d49d5fa7148e4c21caCAS |
[45] L. Zhu, Q. Wang, Macromolecules 2012, 45, 2937.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFKlurs%3D&md5=9619c93c82c5adf8751df7bccc10cec5CAS |
[46] Y. Koike, M. Asai, NPG Asia Mater. 2009, 1, 22.
| Crossref | GoogleScholarGoogle Scholar |
[47] T. Nakajima, H. Groult, Fluorinated Materials for Energy Conversion 2005 (Elsevier: Oxford).
[48] F. Barbir, PEM Fuel Cells: Theory and Practice 2013 (Elsevier: London).
[49] H. Singer, The Paper Conservator 1992, 16, 40.
| Crossref | GoogleScholarGoogle Scholar |
[50] www.elixirstrings.com (accessed March 2014)
[51] Biotextiles as Medical Implants (Eds M. W. King, B. S. Gupta, R. Guidoin) 2013 (Woodhead Publishing Ltd: Cambridge).
[52] R. Chiesa, G. Melissano, R. Castellano, S. Frigerio, Cardiovasc. Surg. 2000, 8, 538.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FmtF2nsw%3D%3D&md5=dd827346a38c5fe5bfd779865c5a2daeCAS | 11068214PubMed |
[53] M. D. M. Evans, R. K. Prakasam, P. K. Vaddavalli, T. C. Hughes, W. Knower, J. S. Wilkie, K. M. McLean, G. Johnson, G. A. McFarland, R. Z. Xie, D. F. Sweeney, Biomaterials 2011, 32, 3158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVOitb4%3D&md5=4cc5ac57d23b2b54f12d95054ce6b103CAS |
[54] E. T. Ahrens, J. W. M. Bulte, Nat. Rev. Immunol. 2013, 13, 755.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtl2ktLjN&md5=e287a7ceba40c6ae6e9324801f948aa1CAS | 24013185PubMed |
[55] D. Bartusik, B. Tomanek, Adv. Drug Deliver. Rev. 2013, 65, 1056.
| 1:CAS:528:DC%2BC3sXmvF2gtrg%3D&md5=6d203e70fbd2ed9b6fb94e5c5dea2abcCAS |
[56] A. L. Moore, Flouroelastomers Handbook 2006 (William Andrew: Norwich, NY).
[57] www2.dupont.com/Lubricants/en_US/ (accessed March 2014)
[58] H. J. Lehmler, Chemosphere 2005, 58, 1471.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKjtLY%3D&md5=d567f34294db597e9cdf6d52d7fe20deCAS | 15694468PubMed |
[59] www.scotchgard.com (accessed March 2014)
[60] T. Cortina, Asia Pacific Fire Magazine, June 2009, 8.
[61] www.fffc.org (accessed March 2014)
[62] R. Renner, Environ. Sci. Technol. 2006, 40, 12.
| Crossref | GoogleScholarGoogle Scholar | 16433328PubMed |
[63] L. Vierke, C. Staude, A. Biegel-Engler, W. Drost, C. Schulte, Environ. Sci. Eur. 2012, 1.
[64] S. C. Gordon, Regul. Toxicol. Pharmacol. 2011, 59, 64.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSltrg%3D&md5=605480dfd6aeb647e7a6d4c7a2f690f9CAS | 20875479PubMed |
[65] A. B. Holmes, Proteins to Plastics: Chemistry as a Dynamic Discipline, Australia 2025: Smart Series 2014. Available at http://www.chiefscientist.gov.au/2014/02/australia-2025-smart-science-chemistry-2/)