Effect of Modifying the Anion of an Ionic Liquid on the Outcome of an SN2 Process
Sinead T. Keaveney A , Dominic V. Francis A , Winnie Cao A B , Ronald S. Haines A and Jason B. Harper A CA School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
B Present address: School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
C Corresponding author. Email: j.harper@unsw.edu.au
Australian Journal of Chemistry 68(1) 31-35 https://doi.org/10.1071/CH14117
Submitted: 6 March 2014 Accepted: 9 April 2014 Published: 26 May 2014
Abstract
The effect of a series of ionic liquids containing different anions (bis(trifluoromethanesulfonyl)imide, dicyanimide, hexafluorophosphate, tetrafluoroborate, and bromide) on the rate constant of a bimolecular substitution process was investigated. A general ionic liquid effect was noted, with increases in the rate constant observed in all ionic liquids used when compared with that in acetonitrile. Temperature-dependent kinetic data allowed calculation of activation parameters in each of the reaction mixtures considered; these parameters showed that the microscopic origins of the rate enhancements observed were not the same for all of the ionic liquids used, demonstrating the importance of the nature of the anion.
References
[1] S. Z. El Abedin, F. Endres, Accounts Chem. Res. 2007, 40, 1106.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1Smu7w%3D&md5=647a76a7e0c0aecbc63895ec15e848f5CAS |
[2] C. L. Hussey, Pure Appl. Chem. 1988, 60, 1763.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhs1WhsrY%3D&md5=0f1295307b94969faa2595cd8f0a51ebCAS |
[3] J. P. Hallett, T. Welton, Chem. Rev. 2011, 111, 3508.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlOlt7s%3D&md5=22097f5800ea51765ff431c2839fa281CAS | 21469639PubMed |
[4] R. D. Rogers, K. R. Seddon, Science 2003, 302, 792.
| Crossref | GoogleScholarGoogle Scholar | 14593156PubMed |
[5] K. R. Seddon, Kinet. Catal. 1996, 37, 693.
| 1:CAS:528:DyaK28XmsV2js7Y%3D&md5=535d524e2ce91bd4c344eb20d00d6dc2CAS |
[6] R. Kore, R. Srivastava, J. Mol. Catal. A-Chem. 2011, 345, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptlant7w%3D&md5=daa909ca1b6028e6f834ca659e9d8099CAS |
[7] K. S. Egorova, V. P. Ananikov, ChemSusChem 2014, 7, 336.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltVyrtg%3D%3D&md5=c1587f0b784b971b6b6e4a714de144b2CAS | 24399804PubMed |
[8] (a) J. B. Harper, M. N. Kobrak, Mini Rev. Org. Chem. 2006, 3, 253.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1Omtbs%3D&md5=f4baa358a7758fa5d5a7a32e38055efcCAS |
(b) H. M. Yau, S. T. Keaveney, B. J. Butler, E. E. L. Tanner, M. S. Guerry, S. R. D. George, M. H. Dunn, A. K. Croft, J. B. Harper, Pure Appl. Chem. 2013, 85, 1979.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) C. E. Rosella, J. B. Harper, Tetrahedron Lett. 2009, 50, 992.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsVWgtQ%3D%3D&md5=aa26af413a35dd2b0e7e2167a2591214CAS |
(b) S. R. D. George, G. L. Edwards, J. B. Harper, Org. Biomol. Chem. 2010, 8, 5354.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. R. Gyton, M. L. Cole, J. B. Harper, Chem. Commun. 2011, 47, 9200.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. H. Dunn, M. L. Cole, J. B. Harper, RSC Adv. 2012, 2, 10160.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) B. Y. W. Man, J. M. Hook, J. B. Harper, Tetrahedron Lett. 2005, 46, 7641.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCksrjK&md5=0ad36fc059f91d51841088d0ea8b6bd5CAS |
(b) H. M. Yau, S. A. Barnes, J. M. Hook, T. G. A. Youngs, A. K. Croft, J. B. Harper, Chem. Commun. 2008, 3576.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. M. Yau, A. G. Howe, J. M. Hook, A. K. Croft, J. B. Harper, Org. Biomol. Chem. 2009, 7, 3272.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. G. Jones, H. M. Yau, E. Davies, J. M. Hook, T. G. A. Youngs, J. B. Harper, A. K. Croft, Phys. Chem. Chem. Phys. 2010, 12, 1873.
| Crossref | GoogleScholarGoogle Scholar |
(e) H. M. Yau, A. K. Croft, J. B. Harper, Faraday Discuss. 2012, 154, 365.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. T. Keaveney, J. B. Harper, RSC Adv. 2013, 3, 15698.
| Crossref | GoogleScholarGoogle Scholar |
(g) E. E. L. Tanner, H. M. Yau, R. R. Hawker, A. K. Croft, J. B. Harper, Org. Biomol. Chem. 2013, 11, 6170.
| Crossref | GoogleScholarGoogle Scholar |
(h) E. E. L. Tanner, R. R. Hawker, H. M. Yau, A. K. Croft, J. B. Harper, Org. Biomol. Chem. 2013, 11, 7516.
| Crossref | GoogleScholarGoogle Scholar |
[11] B. B. Hurisso, K. R. J. Lovelock, P. Licence, Phys. Chem. Chem. Phys. 2011, 13, 17737.and references cited therein.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eqtLbN&md5=4be0b0b176f3c85a41e0fffbd5d737a7CAS | 21897959PubMed |
[12] (a) J. B. Harper, R. M. Lynden-Bell, Mol. Phys. 2004, 102, 85.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFKiur0%3D&md5=499fa55f4a202895b6774bef1c457506CAS |
(b) C. Hardacre, J. D. Holbrey, C. L. Mullan, T. G. A. Youngs, D. T. Bowron, J. Chem. Phys. 2010, 133, 074510.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Zhang, E. J. Maginn, Phys. Chem. Chem. Phys. 2012, 14, 12157.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) C. Hardacre, J. D. Holbrey, S. E. J. McMath, D. T. Bowron, A. K. Soper, J. Chem. Phys. 2003, 118, 273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFKqtLs%3D&md5=0a738243e224868032a741fccfadfbb1CAS |
(b) C. Hardacre, S. E. J. McMath, M. Nieuwenhuyzen, D. T. Bowron, A. K. Soper, J. Phys. Condens. Matter 2003, 15, S159.
| Crossref | GoogleScholarGoogle Scholar |
[14] E. A. Turner, C. C. Pye, R. D. Singer, J. Phys. Chem. A 2003, 107, 2277.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslymsr4%3D&md5=a57da4c24b220fe3a494beedd5cb4ab9CAS |
[15] A. J. McLean, M. J. Muldoon, C. M. Gordon, I. R. Dunkin, Chem. Commun. 2002, 1880.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVOgtbs%3D&md5=ca7864e055ee1cde0995038bf582ff9cCAS |
[16] W. L. F. Armarego, C. Chai, Purification of Laboratory Chemicals, 5th edn, 2003 (Butterworth-Heinemann: Boston).
[17] (a) S. Steines, B. Drießen-Hölscher, P. Wasserscheid, J. Prakt. Chem. 2000, 342, 348.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtlOltbk%3D&md5=f47158df15548cf1635068c2759fd451CAS |
(b) L. Cammarata, S. G. Kazarian, P. A. Salter, T. Welton, Phys. Chem. Chem. Phys. 2001, 3, 5192.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Srour, H. Rouault, C. C. Santini, Y. Chauvin, Green Chem. 2013, 15, 1341.
| Crossref | GoogleScholarGoogle Scholar |
[18] H. Eyring, J. Chem. Phys. 1935, 3, 107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2MXhs1Sksw%3D%3D&md5=20f9295af14778de914b812812790760CAS |