Two-Dimensional Coordination Polymers with Spin Crossover Functionality
Natasha F. Sciortino A and Suzanne M. Neville A BA School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
B Corresponding author. Email: suzanne.neville@sydney.edu.au
Natasha F. Sciortino studied chemistry at the University of Sydney, receiving her Ph.D. in 2010 under the direction of Professor Cameron J. Kepert. She has continued with Professor C. J. Kepert as a postdoctoral fellow and recently co-joined the group of Dr. Suzanne Neville. In 2011 she received an Overseas Travel Fellowship awarded by the Australian Nanotechnology Network. Her research interests include the development of multifunctional spin crossover framework materials with targeted interplay between structural dynamics, magnetism and host-guest chemistry. |
Suzanne M. Neville received her B.Sc. (Hons) in 2000 and Ph.D. in 2005 at the School of Chemistry the University of Sydney on Nanoporous Framework Materials. She then carried out a postdoctoral fellowship within the Molecular Magnetism group at Monash University from 2006 to 2008. In 2009, she was awarded a Marie Curie Fellowship to conduct research within the Institut de Chemie de la Matière Condensée de Bordeaux, France on Photoactive Nanoparticles. In 2011 she was awarded an Australian Research Fellowship within the School of Chemistry, The University of Sydney with research interests in spin crossover, flexible porous materials and nanoparticle development. |
Australian Journal of Chemistry 67(11) 1553-1562 https://doi.org/10.1071/CH14381
Submitted: 12 June 2014 Accepted: 2 July 2014 Published: 2 September 2014
Abstract
In the solid state, the propagation of spin crossover (SCO) information is governed by a complex interplay between inner and outer coordination sphere effects. In this way, lattice cooperativity can be enhanced through solid state packing interactions (i.e. hydrogen-bonding and π-stacking) and via coordinatively linking spin switching sites (i.e. coordination polymers). SCO framework materials have successfully provided an avenue for enhanced cooperativity and additional function as host–guest sensors via their potential porosity. In this review, we explore two-dimensional SCO coordination polymers: (1) spin crossover frameworks (SCOFs) consisting of (4,4) grids and (2) Hofmann-type materials where layers are separated by organic ligands. These families have each allowed the elucidation of important structure–function properties and provided a novel platform for molecular sensing applications. Towards advancing the field of infinite polymeric SCO materials, two-dimensional materials can offer flexible porosity, potentially leading to novel spin state-switching functionality.
References
[1] (a) Spin-Crossover in Transition Metal Compounds I, Topics in Current Chemistry Vol. 233 (Eds. P. Gütlich, H. A. Goodwin) 2004, (Springer-Verlag: Berlin)(b) Spin-Crossover in Transition Metal Compounds II, Topics in Current Chemistry Vol. 234 (Eds. P. Gütlich, H. A. Goodwin) 2004, (Springer-Verlag: Berlin)
(c) Spin-Crossover in Transition Metal Compounds III, Topics in Current Chemistry Vol. 235 (Eds. P. Gütlich, H. A. Goodwin) 2004, (Springer-Verlag: Berlin)
[2] (a) M. A. Halcrow, Spin-Crossover Materials: Properties and Applications 2013 (John Wiley & Sons, Ltd.: Oxford, UK)
(b) P. Gütlich, A. B. Gaspar, Y. Garcia, Beilstein J. Org. Chem. 2013, 9, 342.
| Crossref | GoogleScholarGoogle Scholar |
(c) O. Kahn, Molecular Magnetism 1993 (VCH: New York, NY).
[3] O. Kahn, C. J. Martinez, Science 1998, 279, 44.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1OjsQ%3D%3D&md5=b97f4b5a86bdbc39fbea82c50c3f2654CAS |
[4] P. Gütlich, A. Hauser, H. Spiering, Angew. Chem., Int. Ed. Engl. 1994, 33, 2024.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) K. Madeja, E. König, J. Inorg. Nucl. Chem. 1963, 25, 377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXmsVeitA%3D%3D&md5=832a61cf29181856237d32bade34cafcCAS |
(b) J. A. Real, E. Andres, M. C. Muñoz, M. Julve, T. Granier, A. Bousseksou, F. Varret, Science 1995, 268, 265.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Cambi, A. Cagnasso, R. Atti, Accad. Naz. Lincei (Rome) 1931, 13, 809.
(d) E. König, Coord. Chem. Rev. 1968, 3, 471.
| Crossref | GoogleScholarGoogle Scholar |
(e) K. S. Murray, Eur. J. Inorg. Chem. 2008, 3101.
| Crossref | GoogleScholarGoogle Scholar |
(f) M. C. Muñoz, J. A. Real, Coord. Chem. Rev. 2011, 255, 2068.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. C. Muñoz, J. A. Real, in Spin-Crossover Materials: Properties and Applications (Ed. M. A. Halcrow) 2013, Ch. 4, pp. 121–138 (John Wiley & Sons, Ltd: Oxford, UK)
[6] (a) M. Halcrow, Chem. Soc. Rev. 2011, 40, 4119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns12msrc%3D&md5=c07a2e8dd5b7b9288cee0ec909fb81baCAS | 21483934PubMed |
(b) J.-F. Létard, P. Guionneau, L. Goux-Capes, Top. Curr. Chem. 2004, 235, 221.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. A. Real, A. B. Gaspar, V. Niel, M. C. Muñoz, Coord. Chem. Rev. 2003, 236, 121.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. J. Kepert, in Porous Materials (Eds D. W. Bruce, D. O'Hare, R. I. Walton) 2011, Ch. 1, pp. 1–68 (John Wiley & Sons, Ltd: Chichester, UK)
(e) Y. Garcia, V. Niel, M. C. Muñoz, J. A. Real, Top. Curr. Chem. 2004, 233, 229.
| Crossref | GoogleScholarGoogle Scholar |
[7] O. Kahn, J. Larionova, J. V. Yakhmi, Chem. – Eur. J. 1999, 5, 3443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFKnu78%3D&md5=8bb1b16cfe044ac62330512f13f1f41dCAS |
[8] A. Grosjean, P. Négrier, P. Bordet, C. Etrillard, D. Mondieig, S. Pechev, E. Lebraud, J.-F. Létard, P. Guionneau, Eur. J. Inorg. Chem. 2013, 796.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKgur%2FJ&md5=e658cb860855df69f64faef2fea5ccf3CAS |
[9] (a) K. Uemura, R. Matsuda, S. Kitagawa, J. Solid State Chem. 2005, 178, 2420.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXot1Cgtb8%3D&md5=894cc2301733a805bd820b4ed7c31ceeCAS |
(b) H. Li, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Nature 1999, 402, 276.
| Crossref | GoogleScholarGoogle Scholar |
[10] S. M. Neville, G. J. Halder, K. W. Chapman, M. B. Duriska, B. Moubaraki, K. S. Murray, C. J. Kepert, J. Am. Chem. Soc. 2009, 131, 12106.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1ylu7s%3D&md5=2d38b344e0edefb73ac20b325cc93890CAS | 19705912PubMed |
[11] (a) W. Vreugdenhil, J. H. van Diemen, R. A. G. de Graaff, J. G. Haasnoot, J. Reedijk, A. M. van der Kraan, O. Kahn, J. Zarembowitch, Polyhedron 1990, 9, 2971.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhsFGmur8%3D&md5=c4d410fed6e4702fda5488f9eed33725CAS |
(b) A. Ozarowski, Y. Shunzhong, B. R. McGarvey, A. Mislankar, J. E. Drake, Inorg. Chem. 1991, 30, 3167.
| Crossref | GoogleScholarGoogle Scholar |
[12] G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, J. D. Cashion, Science 2002, 298, 1762.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFKmsrs%3D&md5=b76c9131650d62ab8f7978e3602f8722CAS | 12459583PubMed |
[13] (a) P. D. Southon, L. Liu, E. A. Fellows, D. J. Price, G. J. Halder, K. W. Chapman, B. Moubaraki, K. S. Murray, J.-F. Létard, C. J. Kepert, J. Am. Chem. Soc. 2009, 131, 10998.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosl2rsLs%3D&md5=b781ec3515654c3c042804911384aef2CAS | 19621892PubMed |
(b) R. Ohtani, K. Yoneda, S. Furukawa, N. Horike, S. Kitagawa, A. B. Gaspar, M. C. Muñoz, J. A. Real, M. Ohba, J. Am. Chem. Soc. 2011, 133, 8600.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. A. Real, A. B. Gaspar, M. C. Muñoz, Dalton Trans. 2005, 2062.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. C. Muñoz, J. A. Real, Coord. Chem. Rev. 2011, 255, 2068.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) O. Sato, J. Tao, Y.-Z. Zhang, Angew. Chem., Int. Ed. 2007, 46, 2152.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVOnu70%3D&md5=7602ff959b661c27c34fe39d5d48fbb5CAS |
(b) P. Gamez, J. S. Costa, M. Quesada, G. Aromi, Dalton Trans. 2009, 7845.
| Crossref | GoogleScholarGoogle Scholar |
(c) I. Šalitroš, N. T. Madhu, R. Boča, J. Pavlik, M. Ruben, Monatsh. Chem. 2009, 140, 695.
| Crossref | GoogleScholarGoogle Scholar |
[15] W. A. Baker, H. M. Bobonich, Inorg. Chem. 1964, 3, 1184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXktlOnsr0%3D&md5=e287e4df3a7eb657aff012eafdd91063CAS |
[16] S. M. Neville, B. Moubaraki, K. S. Murray, C. J. Kepert, Angew. Chem., Int. Ed. 2007, 46, 2059.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFKmsL4%3D&md5=d4caab92be21a119a7758a6262ae0b98CAS |
[17] (a) G. J. Halder, K. W. Chapman, S. M. Neville, B. Moubaraki, K. S. Murray, J.-F. Létard, C. J. Kepert, J. Am. Chem. Soc. 2008, 130, 17552.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2jsLfE&md5=9ece099dc22c44a0b0f31cde6e4cd6c2CAS | 19053411PubMed |
(b) S. M. Neville, G. J. Halder, K. W. Chapman, M. B. Duriska, P. D. Southon, J. D. Cashion, J.-F. Létard, B. Moubaraki, K. S. Murray, C. J. Kepert, J. Am. Chem. Soc. 2008, 130, 2869.
| Crossref | GoogleScholarGoogle Scholar |
[18] J.-F. Létard, J. Mater. Chem. 2006, 16, 2550.
| Crossref | GoogleScholarGoogle Scholar |
[19] S. M. Neville, C. Etrillard, S. Asthana, J. F. Létard, Eur. J. Inorg. Chem. 2010, 282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFansg%3D%3D&md5=ee269481e16cab23ef0443f9762b2ccfCAS |
[20] N. Moliner, M. C. Muñoz, S. Létard, X. Solans, N. Menendez, A. Goujon, F. Varret, J. A. Real, Inorg. Chem. 2000, 39, 5390.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsVamtb8%3D&md5=b1e949a348589daa5c4b8f551af70eb7CAS | 11154596PubMed |
[21] Y. Garcia, G. Bravic, C. Gieck, D. Chasseau, W. Tremel, P. Gütlich, Inorg. Chem. 2005, 44, 9723.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1amtr%2FK&md5=8e22eca3540cd67e7a0a454211c946cfCAS | 16363841PubMed |
[22] S. Pillet, J. Hubsch, C. Lecomte, Eur. Phys. J. B 2004, 38, 541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlGis7Y%3D&md5=6d48dd219943eae002cc541ae840e49eCAS |
[23] Y.-C. Chuang, C.-T. Liu, C.-F. Sheu, W.-L. Ho, G.-H. Lee, C.-C. Wang, Y. Wang, Inorg. Chem. 2012, 51, 4663.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkslalt7c%3D&md5=164ea241b0dd3c8c47b3c203cb03d415CAS | 22458342PubMed |
[24] (a) C. J. Adams, J. A. Real, R. E. Waddington, CrystEngComm 2010, 12, 3547.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGhtL7N&md5=6213b2c04938c18931761a054805d163CAS |
(b) C. J. Adams, C. M. Muñoz, R. E. Waddington, J. A. Real, Inorg. Chem. 2011, 50, 10633.
| Crossref | GoogleScholarGoogle Scholar |
[25] F.-L. Yang, M.-G. Chen, X.-L. Li, J. Tao, R.-B. Huang, L.-S. Zheng, Eur. J. Inorg. Chem. 2013, 4234.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsVKju7c%3D&md5=d673b063a1eab8be6c50e74a9ab7b959CAS |
[26] N. F. Sciortino, S. M. Neville, C. Desplanches, J. F. Létard, V. Martínez, J. A. Real, B. Moubaraki, K. S. Murray, C. J. Kepert, Chem. – Eur. J. 2014, 20, 7448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnslWhtr8%3D&md5=22ca5d7e4046ff8f229bf1c71fc0e180CAS | 24807146PubMed |
[27] T. Kitazawa, Y. Gomi, M. Takahashi, M. Takeda, M. Enomoto, A. Miyazaki, J. Mater. Chem. 1996, 6, 119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtV2gtbw%3D&md5=8f984b6f199519e0c760a9bcf06843afCAS |
[28] (a) T. Kitazawa, M. Takahashi, M. Takahashi, M. Enomoto, A. Miyazaki, T. Enoki, M. Takeda, J. Radioanal. Nucl. Chem. 1999, 239, 285.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFCjtLc%3D&md5=50eac39601956ef29dae314481ba8d09CAS |
(b) T. Kitazawa, M. Eguchi, M. Takeda, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 2000, 341, 527.
[29] (a) V. Martínez, A. Belen Gaspar, M. C. Muñoz, G. V. Bukin, G. Levchenko, J. A. Real, Chem. – Eur. J. 2009, 15, 10960.
| Crossref | GoogleScholarGoogle Scholar | 19746366PubMed |
(b) V. Martínez, Z. A. Castillo, M. C. Muñoz, A. B. Gaspar, C. Etrillard, J.-F. Létard, S. A. Terekhov, G. V. Bukin, G. Levchenko, J. A. Real, Eur. J. Inorg. Chem. 2013, 2013, 813.
[30] V. Martínez, A. B. Gaspar, M. C. Muñoz, G. V. Bukin, G. Levchenko, J. A. Real, Chem. – Eur. J. 2009, 15, 10960.
| Crossref | GoogleScholarGoogle Scholar | 19746366PubMed |
[31] V. Martínez, I. Boldog, A. B. Gaspar, V. Ksenofontov, A. Bhattacharjee, P. Gütlich, J. A. Real, Chem. Mater. 2010, 22, 4271.
| Crossref | GoogleScholarGoogle Scholar |
[32] (a) M. C. Muñoz, A. B. Gaspar, A. Galet, J. A. Real, Inorg. Chem. 2007, 46, 8182.
| Crossref | GoogleScholarGoogle Scholar | 17764171PubMed |
(b) J. A. Rodríguez-Velamazán, M. Castro, E. Palacios, R. Burriel, T. Kitazawa, T. Kawasaki, J. Phys. Chem. B 2007, 111, 1256.
| Crossref | GoogleScholarGoogle Scholar |
[33] R. Ohtani, M. Arai, H. Ohba, A. Hori, M. Takata, S. Kitagawa, M. Ohba, Eur. J. Inorg. Chem. 2013, 738.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvV2ktQ%3D%3D&md5=fd83485e138b22c1fe8b34ae85f81e76CAS |
[34] G. Agustí, A. B. Gaspar, M. C. Muñoz, P. G. Lacroix, J. A. Real, Aust. J. Chem. 2009, 62, 1155.
| Crossref | GoogleScholarGoogle Scholar |
[35] V. Martínez, A. B. Gaspar, M. C. Muñoz, R. Ballesteros, N. Ortega-Villar, V. M. Ugalde-Saldívar, R. Moreno-Esparza, J. A. Real, Eur. J. Inorg. Chem. 2009, 2009, 303.
| Crossref | GoogleScholarGoogle Scholar |
[36] F. Ragon, K. Yaksi, N. F. Sciortino, G. Chastanet, J.-F. Letard, D. M. D’Alessandro, C. J. Kepert, S. M. Neville, Aust. J. Chem. 2014, 67, 1563.
| Crossref | GoogleScholarGoogle Scholar |
[37] (a) K. Sénéchal-David, N. Zaman, M. Walko, E. Halza, E. Rivière, R. Guillot, B. L. Feringa, M.-L. Boillot, Dalton Trans. 2008, 1932.
| Crossref | GoogleScholarGoogle Scholar | 18369501PubMed |
(b) M.-L. Boillot, S. Pillet, E. Rivière, N. Claiser, C. Lecomte, Inorg. Chem. 2009, 48, 4729.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Hasegawa, S. Kume, H. Nishihara, Dalton Trans. 2009, 280.
| Crossref | GoogleScholarGoogle Scholar |
[38] (a) J. Park, D. Yuan, K. T. Pham, J.-R. Li, A. Yakovenko, H.-C. Zhou, J. Am. Chem. Soc. 2012, 134, 99.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SmtbnP&md5=dae6459188503367d94f420787a2d5d0CAS | 22148550PubMed |
(b) L. Heinke, M. Cakici, M. Dommaschk, S. Grosjean, R. Herges, S. Bräse, C. Wöll, ACS Nano 2014, 8, 1463.
| Crossref | GoogleScholarGoogle Scholar |
[39] Y. M. Klein, N. F. Sciortino, F. Ragon, C. E. Housecroft, C. J. Kepert, S. M. Neville, Chem. Commun. 2014, 50, 3838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktF2ktLw%3D&md5=671af8413f892beb8176b658c4a1e65dCAS |
[40] K. Kajitani, T. Koshiyama, A. Hori, R. Ohtani, A. Mishima, K. Torikai, M. Ebine, T. Oishi, M. Takata, S. Kitagawa, M. Ohba, Dalton Trans. 2013, 42, 15893.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs12mtbfL&md5=8c33c7481d9ed9f26bbd3331f736676cCAS | 23877189PubMed |