Thermal Spin Crossover Behaviour of Two-Dimensional Hofmann-Type Coordination Polymers Incorporating Photoactive Ligands
Florence Ragon A , Korcan Yaksi A , Natasha F. Sciortino A , Guillaume Chastanet B , Jean-François Létard B , Deanna M. D’Alessandro A , Cameron J. Kepert A and Suzanne M. Neville A CA School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
B CNRS, Université de Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France.
C Corresponding author. Email: suzanne.neville@sydney.edu.au
Australian Journal of Chemistry 67(11) 1563-1573 https://doi.org/10.1071/CH14188
Submitted: 29 March 2014 Accepted: 18 April 2014 Published: 26 June 2014
Abstract
Two spin crossover (SCO)-active 2D Hofmann-type framework materials, [Fe(3-PAP)2Pd(CN)4] (A) and [Fe(4-PAP)2Pd(CN)4] (B) containing the photoactive azo-benzene-type ligands 3-phenylazo-pyridine (3-PAP) and 4-phenylazo-pyridine (4-PAP) were prepared. These materials form non-porous Hofmann-type structures whereby 2D [FeIIPd(CN)4] grids are separated by 3- or 4-PAP ligands. The iron(ii) sites of both materials (A and B) undergo abrupt and hysteretic spin transitions with characteristic transition temperatures T1/2↓,↑: 178, 190 K (ΔT: 12 K) and T1/2↓,↑: 233, 250 K (ΔT: 17 K), respectively. Photo-magnetic characterisations reveal light-induced excited spin state trapping (LIESST) activity in both A and B with characteristic T(LIESST) values of 45 and 40 K. Although both free ligands show trans- to-cis isomerisation in solution under UV-irradiation, as evidenced via absorption spectroscopy, such photo-activity was not observed in the ligands or complexes A and B in the solid state. Structural analysis of a further non-SCO active isomer to B, [Fe(4-PAP)2Pd(CN)4]·1/2(4-PAP) (B·(4-PAP)), which contains free ligand in the pore space is reported.
References
[1] O. Kahn, C. J. Martinez, Science 1998, 279, 44.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1OjsQ%3D%3D&md5=b97f4b5a86bdbc39fbea82c50c3f2654CAS |
[2] J.-F. Létard, P. Guionneau, L. Goux-Capes, Top. Curr. Chem. 2004, 235, 221.
| Crossref | GoogleScholarGoogle Scholar |
[3] M. A. Halcrow, Spin-Crossover Materials: Properties and Applications 2013 (John Wiley & Sons, Ltd: Chichester).
[4] P. Gütlich, A. B. Gaspar, Y. Garcia, Beilstein J. Org. Chem. 2013, 9, 342.
| Crossref | GoogleScholarGoogle Scholar | 23504535PubMed |
[5] M. Natali, S. Giordani, Chem. Soc. Rev. 2012, 41, 4010.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1yksbo%3D&md5=58d58121eabff1891b9db095dcb0334bCAS | 22426200PubMed |
[6] P. Gütlich, H. A. Goodwin, Top. Curr. Chem. 2004, 233, 1.
| Crossref | GoogleScholarGoogle Scholar |
[7] P. Gütlich, A. Hauser, H. Spiering, Angew. Chem. Int. Ed. 1994, 33, 2024.
| Crossref | GoogleScholarGoogle Scholar |
[8] A. Bleuzen, V. Marvaud, C. Mathoniere, B. Sieklucka, M. Verdaguer, Inorg. Chem. 2009, 48, 3453.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVGmu7s%3D&md5=3667a70fde55d4bbd4a33a72c3230ddfCAS | 19361245PubMed |
[9] S. Decurtins, P. Gütlich, C. P. Köhler, H. Spiering, A. Hauser, Chem. Phys. Lett. 1984, 105, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhs1Crt7g%3D&md5=b6976d48e0088bc5a1945423f0a4493fCAS |
[10] A. Hauser, Chem. Phys. Lett. 1986, 124, 543.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XitFGmt74%3D&md5=c893d1255474dbf25fe0c72f83bcfd18CAS |
[11] J.-F. Létard, P. Guionneau, L. Rabardel, J. A. K. Howard, A. E. Goeta, D. Chasseau, O. Kahn, Inorg. Chem. 1998, 37, 4432.
| Crossref | GoogleScholarGoogle Scholar | 11670580PubMed |
[12] J.-F. Létard, L. Capes, G. Chastanet, N. Moliner, S. Létard, J. A. Real, O. Kahn, Chem. Phys. Lett. 1999, 313, 115.
| Crossref | GoogleScholarGoogle Scholar |
[13] S. Marcén, L. Lecren, L. Capes, H. A. Goodwin, J.-F. Létard, Chem. Phys. Lett. 2002, 358, 87.
| Crossref | GoogleScholarGoogle Scholar |
[14] F. Varret, K. Boukheddaden, G. Chastanet, N. Paradis, J.-F. Létard, Eur. J. Inorg. Chem. 2013, 763.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSlsr7N&md5=a57295fa8d2051b58712d280f34e2d60CAS |
[15] E. Buhks, G. Navon, M. Bixon, J. Jortner, J. Am. Chem. Soc. 1980, 102, 2918.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXitVersLo%3D&md5=b1ba4ca491c6894cae63259f7e176fd5CAS |
[16] A. Hauser, Coord. Chem. Rev. 1991, 111, 275.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktlGlt7Y%3D&md5=8ba427f979baadf86eba97eefa403bf2CAS |
[17] S. Bonhommeau, G. Molnár, A. Galet, A. Zwick, J. A. Real, J. J. McGarvey, A. Bousseksou, Angew. Chem. Int. Ed. 2005, 44, 4069.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtF2gs74%3D&md5=5649e4c9fdd14719bf22a211ce80dd0bCAS |
[18] C. Roux, J. Zarembowitch, B. Gallois, T. Granier, R. Claude, Inorg. Chem. 1994, 33, 2273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtFCgtro%3D&md5=959e9953beefde7109cdc7fefd999de2CAS |
[19] K. Sénéchal-David, N. Zaman, M. Walko, E. Halza, E. Rivière, R. Guillot, B. L. Feringa, M.-L. Boillot, Dalton Trans. 2008, 1932.
| Crossref | GoogleScholarGoogle Scholar | 18369501PubMed |
[20] M.-L. Boillot, S. Pillet, E. Rivière, N. Claiser, C. Lecomte, Inorg. Chem. 2009, 48, 4729.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslakurc%3D&md5=768f8724002954ea2d6bec8fe48d0697CAS | 19374370PubMed |
[21] Y. Hasegawa, S. Kume, H. Nishihara, Dalton Trans. 2009, 280.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSmtL7J&md5=6ed64bedd17ee9f64d185d30f6888f4aCAS | 19089008PubMed |
[22] A. Tissot, M.-L. Boillot, S. Pillet, E. Codjovi, K. Boukheddaden, L. M. L. Daku, J. Phys. Chem. C 2010, 114, 21715.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVaisrvP&md5=9054ae4b913396f7664249c0c40ec5fdCAS |
[23] M.-L. Boillot, S. Chantraine, J. Zarembowitch, J.-Y. Lallemand, J. Prunet, New J. Chem. 1999, 23, 179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXos1CmtQ%3D%3D&md5=84ba9923e07731d62f44b0bcbb80c6c7CAS |
[24] S. Hirose, S. Hayami, Y. Maeda, Bull. Chem. Soc. Jpn. 2000, 73, 2059.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtlGmsbs%3D&md5=6ccd7cfb5e4057aab003e62cd274a4ecCAS |
[25] Y. Hasegawa, S. Kume, H. Nishihara, Dalton Trans. 2009, 280.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSmtL7J&md5=6ed64bedd17ee9f64d185d30f6888f4aCAS | 19089008PubMed |
[26] A. Modrow, D. Zargarani, R. Herges, N. Stock, Dalton Trans. 2011, 40, 4217.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Kgtrg%3D&md5=2929c160751ce0d18f65c33b378a3135CAS | 21394353PubMed |
[27] J. Park, D. Yuan, K. T. Pham, J.-R. Li, A. Yakovenko, H.-C. Zhou, J. Am. Chem. Soc. 2012, 134, 99.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SmtbnP&md5=dae6459188503367d94f420787a2d5d0CAS | 22148550PubMed |
[28] L. Heinke, M. Cakici, M. Dommaschk, S. Grosjean, R. Herges, S. Bräse, C. Wöll, ACS Nano 2014, 8, 1463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlWrtg%3D%3D&md5=eeffda6518a16893a39f7efcf17e0c3fCAS | 24400960PubMed |
[29] D. Hermann, H. Emerich, R. Lepski, D. Schaniel, U. Ruschewitz, Inorg. Chem. 2013, 52, 2744.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisV2isbo%3D&md5=197a035b79f3ec0755519b19c2eeeeb1CAS | 23409796PubMed |
[30] J. W. Brown, B. L. Henderson, M. D. Kiesz, A. C. Whalley, W. Morris, S. Grunder, H. Deng, H. Furukawa, J. I. Zink, J. F. Stoddart, O. M. Yaghi, Chem. Sci. 2013, 4, 2858.
| 1:CAS:528:DC%2BC3sXos1yqtrY%3D&md5=09697ed4621a3ebb8f82a056f83fe207CAS |
[31] J. A. Real, E. Andres, M. C. Muñoz, M. Julve, T. Granier, A. Bousseksou, F. Varret, Science 1995, 268, 265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltVChs74%3D&md5=5d965002e31e03bb5dc1760ff005cab7CAS | 17814788PubMed |
[32] G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murray, J. D. Cashion, Science 2002, 298, 1762.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFKmsrs%3D&md5=b76c9131650d62ab8f7978e3602f8722CAS | 12459583PubMed |
[33] S. M. Neville, B. Moubaraki, K. S. Murray, C. J. Kepert, Angew. Chem. Int. Ed. 2007, 46, 2059.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFKmsL4%3D&md5=d4caab92be21a119a7758a6262ae0b98CAS |
[34] G. J. Halder, K. W. Chapman, S. M. Neville, B. Moubaraki, K. S. Murray, J.-F. Létard, C. J. Kepert, J. Am. Chem. Soc. 2008, 130, 17552.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2jsLfE&md5=9ece099dc22c44a0b0f31cde6e4cd6c2CAS | 19053411PubMed |
[35] S. M. Neville, G. J. Halder, K. W. Chapman, M. B. Duriska, P. D. Southon, J. D. Cashion, J.-F. Létard, B. Moubaraki, K. S. Murray, C. J. Kepert, J. Am. Chem. Soc. 2008, 130, 2869.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFehsL4%3D&md5=33bf58960d2b0a403bce1ef4470d9295CAS | 18254628PubMed |
[36] S. M. Neville, G. J. Halder, K. W. Chapman, M. B. Duriska, B. Moubaraki, K. S. Murray, C. J. Kepert, J. Am. Chem. Soc. 2009, 131, 12106.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1ylu7s%3D&md5=2d38b344e0edefb73ac20b325cc93890CAS | 19705912PubMed |
[37] T. Kitazawa, Y. Gomi, M. Takahashi, M. Takeda, M. Enomoto, A. Miyazaki, J. Mater. Chem. 1996, 6, 119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtV2gtbw%3D&md5=8f984b6f199519e0c760a9bcf06843afCAS |
[38] V. Niel, J. M. Martinez-Agudo, M. C. Munoz, A. B. Gaspar, J. A. Real, Inorg. Chem. 2001, 40, 3838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVChtr8%3D&md5=11c9e1b330f512dff5d70f6d3f7ab05eCAS | 11466039PubMed |
[39] V. Martinez, Z. A. Castillo, M. C. Munoz, A. B. Gaspar, C. Etrillard, J.-F. Letard, S. A. Terekhov, G. V. Bukin, G. Levchenko, J. A. Real, Eur. J. Inorg. Chem. 2013, 2013, 813.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFSgtg%3D%3D&md5=4291cf23cbb1db735d0b98663f452250CAS |
[40] G. Agustí, A. B. Gaspar, M. C. Mñnoz, P. G. Lacroix, J. A. Real, Aust. J. Chem. 2009, 62, 1155.
| Crossref | GoogleScholarGoogle Scholar |
[41] V. Martínez, A. B. Gaspar, M. C. Muñoz, G. V. Bukin, G. Levchenko, J. A. Real, Chem. Eur. J. 2009, 15, 10960.
| Crossref | GoogleScholarGoogle Scholar | 19746366PubMed |
[42] P. D. Southon, L. Liu, E. A. Fellows, D. J. Price, G. J. Halder, K. W. Chapman, B. Moubaraki, K. S. Murray, J.-F. Létard, C. J. Kepert, J. Am. Chem. Soc. 2009, 131, 10998.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosl2rsLs%3D&md5=b781ec3515654c3c042804911384aef2CAS | 19621892PubMed |
[43] R. Ohtani, K. Yoneda, S. Furukawa, N. Horike, S. Kitagawa, A. B. Gaspar, M. C. Muñoz, J. A. Real, M. Ohba, J. Am. Chem. Soc. 2011, 133, 8600.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVWmsrs%3D&md5=6962a27bc9e864576a0e40a128315cf1CAS | 21526852PubMed |
[44] H. Shepherd, C. Bartual-Murgui, G. Molnàr, J. A. Real, M. C. Muñoz, L. Salmon, A. Bousseksou, New J. Chem. 2011, 35, 1205.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslygsbg%3D&md5=378ffc748f6d2875e8e3e91cf3f7d105CAS |
[45] K. Takahashi, Y. Hasegawa, R. Sakamoto, M. Nishikawa, S. Kume, E. Nishibori, H. Nishihara, Inorg. Chem. 2012, 51, 5188.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsVaksLc%3D&md5=add203032d1ca7e0bd1f79ff5df0f9c7CAS | 22494502PubMed |
[46] N. Yanai, T. Uemura, M. Inoue, R. Matsuda, T. Fukushima, M. Tsujimoto, S. K. Isoda, J. Am. Chem. Soc. 2012, 134, 4501.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVCrur0%3D&md5=d304fd01a0622b5d8ba5be4255ded3eaCAS | 22372403PubMed |
[47] K. Uemura, R. Matsuda, S. Kitagawa, J. Solid State Chem. 2005, 178, 2420.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXot1Cgtb8%3D&md5=894cc2301733a805bd820b4ed7c31ceeCAS |
[48] C. M. Grunert, S. Reiman, H. Spiering, J. A. Kitchen, S. Brooker, P. Gütlich, Angew. Chem. Int. Ed. 2008, 47, 2997.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFChsbo%3D&md5=940c69371fa33c7b4bc1613d75a40e5bCAS |
[49] S. G. Telfer, B. Bocquet, A. F. Williams, Inorg. Chem. 2001, 40, 4818.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFCrtrc%3D&md5=6c768eb5902de5ada0d9689d1b019767CAS | 11531425PubMed |
[50] Y. M. Klein, N. F. Sciortino, F. Ragon, C. E. Housecroft, C. J. Kepert, S. M. Neville, Chem. Commun. 2014, 50, 3838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktF2ktLw%3D&md5=671af8413f892beb8176b658c4a1e65dCAS |
[51] Bruker ASX, TOPAS ver. 4.2 2009.
[52] J.-F. Létard, J. Mater. Chem. 2006, 16, 2550.
| Crossref | GoogleScholarGoogle Scholar |
[53] M. Halcrow, Chem. Soc. Rev. 2011, 40, 4119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns12msrc%3D&md5=c07a2e8dd5b7b9288cee0ec909fb81baCAS | 21483934PubMed |
[54] R. Othani, M. Arai, H. Ohba, A. Hori, M. Takata, S. Kitagawa, M. Ohba, Eur. J. Inorg. Chem. 2013, 738.
| Crossref | GoogleScholarGoogle Scholar |
[55] N. R. Ayyangar, S. N. Naik, K. V. Srinivasan, Tetrahedron Lett. 1989, 30, 7253.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitlCrurw%3D&md5=d1f68b9468d45074788ff71fc28fe8daCAS |
[56] G. M. Sheldrick, TWINABS 1996 (University of Gottingen: Gottingen).
[57] APEX II Software Package 2005 (Bruker AXS Inc.: Madison, WI).
[58] CrysAlisPro (Agilent Technologies XRD Products: Yarnton, Oxfordshire).
[59] G. M. Sheldrick, SHELX97 Programs for Crystal Structure Analysis 1998 (University of Göttingen: Göttingen).
[60] L. J. Barbour, J. Supramol. Chem. 2001, 1, 189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlOlsb8%3D&md5=c1944f963c9746f0d36d45a7614ad428CAS |
[61] A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, D. Hausermann, High Pressure Res. 1996, 14, 235.
| Crossref | GoogleScholarGoogle Scholar |
[62] A. P. Hammersley, ESRF Internal Report. ESRF97HA02T 1997 (ESRF: Grenoble).
[63] A. Hauser, Top. Curr. Chem. 2004, 234, 155.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVKhsrc%3D&md5=0785f37aa63d137acbd4bc83bb8f219dCAS |
[64] J. F. Létard, P. Guionneau, O. Nguyen, J. S. Costa, S. Marcén, G. Chastanet, M. Marchivie, L. Goux-Capes, Chem. Eur. J. 2005, 11, 4582.
| Crossref | GoogleScholarGoogle Scholar | 15861388PubMed |