Polyoxometalate-Supported Lanthanoid Single-Molecule Magnets
Michele Vonci A and Colette Boskovic A BA School of Chemistry, The University of Melbourne, Melbourne, Vic. 3010, Australia.
B Corresponding author. Email: c.boskovic@unimelb.edu.au
Michele Vonci studied at the University of Florence where he obtained his Laurea in Chemistry under the supervision of Roberta Sessoli and Andrea Caneschi with a thesis – largely carried out in the laboratory of Richard Winpenny at the University of Manchester – on the magnetic properties of polynuclear nickel and cobalt complexes. In 2013, he joined the Boskovic research group at the University of Melbourne as a Ph.D. student. His research interests are currently focused on the synthesis and characterisation of magnetic properties of lanthanoid complexes supported by polyoxometalates. |
Colette Boskovic obtained her B.Sc. (Hons) and Ph.D. degrees from the University of Melbourne, undertaking her Ph.D. research under the supervision of Tony Wedd. After post-doctoral stints with George Christou at Indiana University and Hans Güdel at the University of Berne, she returned to the University of Melbourne in 2004, where she is now Senior Lecturer. Colette was awarded the 2013 Alan Sargeson Award from the Inorganic Chemistry Division of the Royal Australian Chemical Institute. Her research interests lie in the fields of molecular magnetism, polyoxometalate chemistry, and switchable molecular materials. |
Australian Journal of Chemistry 67(11) 1542-1552 https://doi.org/10.1071/CH14166
Submitted: 21 March 2014 Accepted: 9 May 2014 Published: 8 July 2014
Abstract
Polyoxometalates are robust and versatile multidentate oxygen-donor ligands, eminently suitable for coordination to trivalent lanthanoid ions. To date, 10 very different structural families of such complexes have been found to exhibit slow magnetic relaxation due to single-molecule magnet (SMM) behaviour associated with the lanthanoid ions. These families encompass complexes with between one and four of the later lanthanoid ions: Tb, Dy, Ho, Er, and Yb. The lanthanoid coordination numbers vary between six and eleven and a range of coordination geometries are evident. The highest energy barrier to magnetisation reversal measured to date for a lanthanoid–polyoxometalate SMM is Ueff/kB = 73 K for the heterodinuclear Dy–Eu compound (Bu4N)8H4[DyEu(OH)2(γ-SiW10O36)2].
References
[1] D. Gatteschi, R. Sessoli, Angew. Chem. Int. Ed. 2003, 42, 268.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWqsLw%3D&md5=72f1d79bb876f14a267ea0c229c0cb19CAS |
[2] R. E. P. Winpenny, Molecular Cluster Magnets (World Scientific Series in Nanoscience and Nanotechnology) 2011 (World Scientific Publishing Company: Singapore).
[3] D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets (Mesoscopic Physics and Nanotechnology) 2011 (Oxford University Press: New York, NY).
[4] D. Stepanenko, M. Trif, D. Loss, Inorg. Chim. Acta 2008, 361, 3740.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVagtLrJ&md5=79d277beaeb07b994f0849cb1960d93cCAS |
[5] N. Ishikawa, M. Sugita, W. Wernsdorfer, Angew. Chem. Int. Ed. 2005, 44, 2931.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVKlsbo%3D&md5=54b44234d5368311f6f53d8fbcfcd616CAS |
[6] D. N. Woodruff, R. E. P. Winpenny, R. A. Layfield, Chem. Rev. 2013, 113, 5110.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltlKlsLg%3D&md5=fa49afbd486ceb68bd60e819ec662982CAS | 23550940PubMed |
[7] C. J. Milios, A. Vinslava, W. Wernsdorfer, S. Moggach, S. Parsons, S. P. Perlepes, G. Christou, E. K. Brechin, J. Am. Chem. Soc. 2007, 129, 2754.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFKkur0%3D&md5=49ff4a5d6ffd1700d766d96aed2a331aCAS | 17309264PubMed |
[8] D. Yoshihara, S. Karasawa, N. Koga, J. Am. Chem. Soc. 2008, 130, 10460.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXos12qsb8%3D&md5=805d8cc6389bd6c3958ffd713fb7a4caCAS | 18642820PubMed |
[9] O. Waldmann, Inorg. Chem. 2007, 46, 10035.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1CrurzF&md5=a54c8955b67ff72519b8bdb69153554fCAS | 17979271PubMed |
[10] J. M. Zadrozny, D. J. Xiao, M. Atanasov, G. J. Long, F. Grandjean, F. Neese, J. R. Long, Nat. Chem. 2013, 5, 577.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVeju7c%3D&md5=ca229f7b230b6a7a05ebca334a6d27d2CAS | 23787747PubMed |
[11] N. Ishikawa, M. Sugita, T. Ishikawa, S.-Y. Koshihara, Y. Kaizu, J. Am. Chem. Soc. 2003, 125, 8694.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVGitrc%3D&md5=633bc945edb3ef1d177e68ba2300eb6dCAS | 12862442PubMed |
[12] N. Ishikawa, M. Sugita, T. Okubo, N. Tanaka, T. Iino, Y. Kaizu, Inorg. Chem. 2003, 42, 2440.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslynt7Y%3D&md5=ab127355b4248ef668e1d01756f64463CAS | 12665381PubMed |
[13] C. R. Ganivet, B. Ballesteros, G. de la Torre, J. M. Clemente-Juan, E. Coronado, T. Torres, Chem. – Eur. J. 2013, 19, 1457.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKmsLnE&md5=22223430cdc3dee5c5a74abb672bcd2aCAS | 23197446PubMed |
[14] R. Sessoli, A. K. Powell, Coord. Chem. Rev. 2009, 253, 2328.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKgtrzF&md5=be121afe1f5ce1c75d79bf1fa03aeca0CAS |
[15] L. Sorace, C. Benelli, D. Gatteschi, Chem. Soc. Rev. 2011, 40, 3092.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVWku74%3D&md5=582168b7a721804c2cadc60e2349b50eCAS | 21390351PubMed |
[16] R. A. Layfield, Organometallics 2014, 33, 1084.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkvFKmsQ%3D%3D&md5=4c832c368d98876aa2e2f70d7a38529bCAS |
[17] J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, Chem. Soc. Rev. 2012, 41, 7464.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGqurjF&md5=5863825fa9814fadcd1460e1cd109f71CAS | 22948854PubMed |
[18] J. Luzon, R. Sessoli, Dalton Trans. 2012, 41, 13556.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGjs7rE&md5=13b1256ebd04d9ccc43c68f770f42b3dCAS | 22936346PubMed |
[19] J. D. Rinehart, J. R. Long, Chem. Sci. 2011, 2, 2078.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12ju7fE&md5=fd47d8244717575c9b72eb73785b2460CAS |
[20] P. Zhang, L. Zhang, C. Wang, S. Xue, S.-Y. Lin, J. Tang, J. Am. Chem. Soc. 2014, 136, 4484.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktF2msr8%3D&md5=a5599c7f4946e9fb25f8991ee51c690cCAS | 24625001PubMed |
[21] K. Meihaus, J. Long, J. Am. Chem. Soc. 2013, 135, 17952.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslaksb7J&md5=89229b3dbde55e5bfcfee3ea3284207fCAS | 24188004PubMed |
[22] M. Maeda, S. Hino, K. Yamashita, Y. Kataoka, M. Nakano, T. Yamamura, T. Kajiwara, Dalton Trans. 2012, 41, 13640.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGjs7rF&md5=1f721e572ccc3d6fdfc06175c7daaa88CAS | 22898750PubMed |
[23] N. F. Chilton, S. K. Langley, B. Moubaraki, A. Soncini, S. R. Batten, K. S. Murray, Chem. Sci. 2013, 4, 1719.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlyms7g%3D&md5=afab6d1dda9dbd497293392ca5ac14ddCAS |
[24] M. T. Pope, Heteropoly and Isopoly Oxometalates 1983 (Springer: Berlin).
[25] D.-L. Long, L. Cronin, Dalton Trans. 2012, 41, 9799.(entire issue).
| Crossref | GoogleScholarGoogle Scholar |
[26] T. Liu, U. Kortz, Eur. J. Inorg. Chem. 2013, 2013, 1556.(entire issue).
| Crossref | GoogleScholarGoogle Scholar |
[27] X. López, J. J. Carbó, C. Bo, J. M. Poblet, Chem. Soc. Rev. 2012, 41, 7537.
| Crossref | GoogleScholarGoogle Scholar | 22885565PubMed |
[28] T. Yamase, Chem. Rev. 1998, 98, 307.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVSgtg%3D%3D&md5=79b379cdf98fd1928feaf1f7596eb207CAS | 11851508PubMed |
[29] C. M. Granadeiro, B. de Castro, S. S. Balula, L. Cunha-Silva, Polyhedron 2013, 52, 10.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFOlu7%2FO&md5=bc6e609063c8f52f582ed48471b49569CAS |
[30] C. Ritchie, C. Boskovic, in Polyoxometalate Chemistry: Some Recent Trends (Ed. F. Sécheresse) 2013, pp. 201–238 (World Scientific: Singapore).
[31] C. Boglio, G. Lemière, B. Hasenknopf, S. Thorimbert, E. Lacôte, M. Malacria, Angew. Chem. Int. Ed. 2006, 45, 3324.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsVOhtbo%3D&md5=1d49fe97b03f4641d777ad7fdc1a2670CAS |
[32] C. Ritchie, E. G. Moore, M. Speldrich, P. Kögerler, C. Boskovic, Angew. Chem. Int. Ed. 2010, 49, 7702.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSrtbzK&md5=007487fc1c2882022af3ffd56f4ee06aCAS |
[33] C. Ritchie, V. Baslon, E. G. Moore, C. Reber, C. Boskovic, Inorg. Chem. 2012, 51, 1142.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OjtbzI&md5=41aea53f48889a009cdbfc989406c470CAS | 22220495PubMed |
[34] M. Llunell, D. Casanova, J. Cirera, J. M. Bofill, P. Alemany, S. Alvarez, M. Pinsky, D. Avnir, SHAPE 2.0 2003 (Universitat De Barcelona and the Hebrew University of Jerusalem: Barcelona).
[35] M. A. AlDamen, J. M. Clemente-Juan, E. Coronado, C. Martí-Gastaldo, A. Gaita-Ariño, J. Am. Chem. Soc. 2008, 130, 8874.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlKrtro%3D&md5=170eaa643bc188300bf07bec60493eeaCAS | 18558687PubMed |
[36] M. A. AlDamen, S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, C. Martí-Gastaldo, F. Luis, O. Montero, Inorg. Chem. 2009, 48, 3467.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVGmur0%3D&md5=c064bdd2cd6404fbad394ac7ab2af82dCAS | 19361246PubMed |
[37] S. Ghosh, S. Datta, L. Friend, S. Cardona-Serra, A. Gaita-Ariño, E. Coronado, S. Hill, Dalton Trans. 2012, 41, 13697.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGjs7vL&md5=8cd1c003fce73c8896bf3607c6eb3c12CAS | 22951605PubMed |
[38] S. Cardona-Serra, J. M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, A. Camón, M. Evangelisti, F. Luis, M. J. Martínez-Pérez, J. Sesé, J. Am. Chem. Soc. 2012, 134, 14982.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Smu7fL&md5=f039caf72b96fb5b62f5e3444b05f8a8CAS | 22894703PubMed |
[39] R. D. Peacock, T. J. R. Weakley, J. Chem. Soc. A 1971, 1836.
| Crossref | GoogleScholarGoogle Scholar |
[40] Y. Jeannin, J. Martin-Frère, D. J. Choi, M. T. Pope, in Inorganic Syntheses (Ed. A. P. Ginsberg) 1990, Vol. 27, 115–117 (John Wiley & Sons, Inc.: Hoboken, NJ).
[41] I. Creaser, M. C. Heckel, R. J. Neitz, M. T. Pope, Inorg. Chem. 1993, 32, 1573.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltlSgsrw%3D&md5=39cba469c37859648b8727582b95dd9eCAS |
[42] L. Liu, F. Li, L. Xu, X. Liu, G. Gao, J. Solid State Chem. 2010, 183, 350.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Ogt78%3D&md5=292da99bd9a0bbd11fb0de9a94e7f36dCAS |
[43] K. Suzuki, R. Sato, N. Mizuno, Chem. Sci. 2013, 4, 596.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlyluw%3D%3D&md5=ea14670ade5ae2abcc351454d7eb19dfCAS |
[44] R. Sato, K. Suzuki, M. Sugawa, N. Mizuno, Chem. – Eur. J. 2013, 19, 12982.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVSktbfP&md5=69b1bb44664cd3c08b27f1d576e19d4dCAS | 24019091PubMed |
[45] X. Feng, W. Zhou, Y. Li, H. Ke, J. Tang, R. Clérac, Y. Wang, Z. Su, E. Wang, Inorg. Chem. 2012, 51, 2722.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlWnt70%3D&md5=72bb6a52f549623b9864d4cbc71a76d1CAS | 22335770PubMed |
[46] F. Li, W. Guo, L. Xu, L. Ma, Y. Wang, Dalton Trans. 2012, 41, 9220.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFKrsbs%3D&md5=9269a2d5fdab7cbca3eec28bf31a2e97CAS | 22729234PubMed |
[47] C. Ritchie, M. Speldrich, R. W. Gable, L. Sorace, P. Kögerler, C. Boskovic, Inorg. Chem. 2011, 50, 7004.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVCqtrk%3D&md5=60b3ed6d04d4a7cc4a282bd709154eb0CAS | 21732617PubMed |
[48] P. Zhang, Y.-N. Guo, J. Tang, Coord. Chem. Rev. 2013, 257, 1728.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltFOks78%3D&md5=adfe0b10611d589ba42cbaa45c2904a9CAS |
[49] M.-E. Boulon, G. Cucinotta, J. Luzon, C. Degl’Innocenti, M. Perfetti, K. Bernot, G. Calvez, A. Caneschi, R. Sessoli, Angew. Chem. Int. Ed. 2013, 52, 350.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKntbzE&md5=5a65e341259e61287bd1fa5a5fb0c300CAS |
[50] G. Cucinotta, M. Perfetti, J. Luzon, M. Etienne, P.-E. Car, A. Caneschi, G. Calvez, K. Bernot, R. Sessoli, Angew. Chem. Int. Ed. 2012, 124, 1638.
| Crossref | GoogleScholarGoogle Scholar |
[51] N. F. Chilton, D. Collison, E. J. L. McInnes, R. E. P. Winpenny, A. Soncini, Nat. Commun. 2013, 4, 2551.
| Crossref | GoogleScholarGoogle Scholar | 24096593PubMed |
[52] F. Habib, G. Brunet, V. Vieru, I. Korobkov, L. F. Chibotaru, M. Murugesu, J. Am. Chem. Soc. 2013, 135, 13242.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlWltbfK&md5=612ba091d7acb17e0fff5604278d6f6fCAS | 23964606PubMed |
[53] M. Gonidec, D. B. Amabilino, J. Veciana, Dalton Trans. 2012, 41, 13632.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGjs73E&md5=c004096612ef5e5967c4ef670c93e135CAS | 22878265PubMed |
[54] N. Ishikawa, M. Sugita, N. Tanaka, T. Ishikawa, S. Koshihara, Y. Kaizu, Inorg. Chem. 2004, 43, 5498.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsFSnsbY%3D&md5=bc9dc9bc497a7c348d3844e4af9197ddCAS | 15332799PubMed |
[55] S. Takamatsu, T. Ishikawa, S. Koshihara, N. Ishikawa, Inorg. Chem. 2007, 46, 7250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXoslKhsLc%3D&md5=5ff8432757df62c9cdd2920fc3db434eCAS | 17691726PubMed |